One approch to understand the singularities of a set X (e.g. of an algebraic subset of ℂ^n) consists in finding a stratification of that set. If a point x ∈ X lies in a d-dimensional stratum, then intuitively, a neighbourhood of x is roughly translation invariant in d dimensions. After replacing ℂ by a suitable field extension K “containing infinitesimal elements” (e.g. K = ℂ((t))), we obtain a precise notion of x having an infinitesimal neighbourhood which is roughly translation invariant in d dimensions. This allows us to define a canonical stratification of X, and by looking at even smaller balls near x, associate some invariants to the singularity at x. I will explain how this works, and hopefully, I will find the time to show, as an example application, how from this, one can recover some information about Poincaré series. This is joint work (in progress) with David Bradley-Williams.
We study the decomposition of multivariate polynomials as sums of powers of linear forms. In this talk, we focus on the following problem: given a homogeneous polynomial of degree 3 over a field, decide whether it can be written as a sum of cubes of linearly independent linear forms over an extension field. This task can be equivalently expressed as a decomposition problem for symmetric tensors of order 3. Even if the input polynomial has rational coefficients, the answer may depend on the choice of the extension field. We study the cases where the extension field is either the real or the complex numbers. Our main result is an algorithm that solves this problem in polynomial time when implemented in the bit model of computation. Furthermore, contrary to the previous algorithms for the same problem, our algorithm is algebraic and does not make any appeal to polynomial factorization. We also discuss how our algorithm can be extended to other tensor decomposition problems. This talk is based on a joint work with Pascal Koiran.
In this talk, we will see how to build trace models of programming languages in a systematic way using labelled transition systems designed by operational game semantics. The primary purpose of these models is to characterize contextual equivalence, the maximal observational equational theory, thanks to full-abstraction results. We will consider higher-order programming languages with features that include mutable store (local references), control operators (call/cc), cryptographic operators (dynamic sealing), and rich type systems (algebraic data types, parametric polymorphism). We will see how to apply this framework to prove a fully abstract compilations result from parametric polymorphism to untyped cryptographic lambda-calculus.
Soit X une variété algébrique affine complexe. La ``seminormalisation de X'' est une variété algébrique X^+ obtenue en recollant les points de la normalisation se trouvant au-dessus d’un même point de X. L'un des intérêts de la seminormalisation provient du fait qu’elle possède des singularités particulières tout en restant liée à X par un homéomorphisme fini et birationnel. Le résultat principal que nous présenterons est qu'il y a un isomorphisme entre l'anneau des fonctions polynomiales sur X^+(C) et l'anneau des fonctions rationnelles de X qui s'étendent par continuité euclidienne sur X(C). Nous donnerons quelques caractérisations de ce type de fonctions, parlerons de leur lien avec les fonctions régulues et enfin nous nous en servirons pour construire quelques exemples de seminormalisations.
If U is an open connected subset of R^n and f is a real-valued harmonic function on U, then what can be said about the structure on the real field generated by f? In this generality, the question is only heuristic; indeed, it is rather hopeless without some reasonable tameness conditions on the boundary of U (e.g., U=R^n). I will give a brief survey of what I know (which is far outweighed by what I do not know). There are connections to open problems in the associated analytic geometry.
In this talk, we will show that given a definable set X of IR^n with empty interior, there exists a definable bi-Lipschitz homeomorphism h from IR^n to IR^n such that h(X) has a finite set of regular projections (in the sense of Mostowski). A consequence of this result is that Parusinski's regular cover theorem holds for definable sets in an arbitrary o-minimal structure
Lors de cet exposé, je discuterai de l'obtention de mélanges de fluide compressibles. J'essaierai de décrire plusieurs approches du problème qui sont issus de collaborations avec C. Burtea, M. Hillairet et F. Lagoutière en espérant présenter une introduction au sujet qui montre l'intérêt d'approches mathématiques.
Dans un article célèbre, Raynaud et Gruson ont développé une technique d'aplatissement par éclatements dans en géométrie algébrique (à la Grothendieck). Je commencerai par rappeler leurs résultats, puis expliquerai comment mettre en œuvre ce type de méthode dans le cadre des espaces de Berkovich, et les difficultés à surmonter. Je donnerai aussi quelques applications, et notamment une interprétation géométrique d'un résultat d'élimination des quantificateurs dans les corps valués algébriquement clos avec fonctions analytiques dû à Cluckers et Lipshitz.
In view of recent applications of o-mininality to number theory and algebraic geometry, it is natural to reflect on the possible definability of important functions such as Euler's Gamma function and Riemann's zeta function. While none of these two functions is definable in the classical structures mainly used in applications, we show that they are definable in a common o-minimal expansion of the real field. The construction of this new structure is based on an appropriate version of Borel-Laplace summation theory. Joint work with T. Servi and P. Speissegger.
Un tournoi est un graphe orienté complet dans le sens où tous deux sommets sont liés par un arc. Ceci donne aux tournois un sens anarchique, cependant, l'étude que nous présentons sur l'existence de quelques modèles bien ordonnés dans les tournois va changer complètement la situation. Nous allons en apprendre que les tournois, définis d'une manière presque chaotique, sont des architectures impressionnantes structurées suivant des règles bien précises. Nous étudions l'existence des chemins, cycles et arbres dans les tournois, Nous nous intéressons aussi au nombre d'un certain type dans les tournois: la parité, et des liens avec les tournois complémentaires.
The Euclidean distance degree (EDD) of a variety X in R^n measures the algebraic complexity of computing the point of X closest to a general point u in R^n. It is the number of critical points of the complexified distance function from u to X. Known formulas involve polar classes of the conormal variety to X or Chern classes of X. In this talk, I will discuss formulas of a different character, when X is a hypersurface whose defining equation is general given its Newton polytope. In this case, the EDD is shown to be the mixed volume of the critical point equations. This uses Bernstein's Other Theorem, which is of independent interest. We give an interesting closed formula for the EDD when the Newton polytope is a rectangular parallelepiped. This is joint work with Paul Breiding and James Woodcock.
Dans cet exposé je définirais une nouvelle notion de minimalité, la h-minimalité, pour les corps henséliens de caractéristique nulle qui généralise les autres notions de minimalité pour les corps valués (C, P, V…) et ne restreint pas, contrairement aux notions précédentes, les corps résiduels et groupes de valeurs possibles. Cette notion est définie, par analogie avec l’o-minimalité, par le fait que les ensembles définissables sont contrôlés par un nombre fini de points. Contrairement à l’o-minimalité, il faut porter une attention particulière aux paramètres de définition des ensembles définissables, ce qui nous amène à définir toute une famille de notions de h-minimalité. Dans un second temps, j’exposerai les conséquences de la h-minimalité, dont la propriété du jacobien qui joue un rôle central dans le développement de l’intégration motivique, mais aussi des variantes en degré et dimensions supérieures. (travail en commun avec R. Cluckers, I. Halupczok et F. Vermeulen)
Abstract: We study periodic expansions in positional number systems. In particular, for a complex number $alpha$ we prove that there exists a finite set $D$ such that every element of $mathbb Q(alpha)$ can be represented by an eventually periodic expansion with the base $alpha$ and digits in $D$. Through a connection with the so-called spectra of numbers we will be also able to decide whether the expansion are finite on the ring $mathbb Z[alpha]$. As an application of these results, we will show that we can classify totally complex quartic fields whose integers can be expressed as sums of distinct units.
Beta expansions are well known generalisations of the familiar integer base representations of real numbers. Importantly a real number x often has many beta expansions. As such, it is natural to ask whether a real number x has a beta expansion that satisfies a certain additional property. Properties we are interested in may relate to digit frequencies, complexity, etc. In this talk I will survey a number of results in this direction and provide a flavour of their proofs. I will also pose some open questions.
In this talk I will present some of the works developed with the aim to obtain a relevant mathematical model for (mainly) the bedload sediment transport. This problem is classically approximated by the Saint-Venant-Exner system but it has some drawbacks: the mass conservation is not ensured, the gravitational effects are not originally included and the system does not have an associated energy balance. In the first part I will show how we obtained a Saint-Venant-Exner type model from a formal asymptotic derivation that resolves these inconveniences. In a second work the bedload problem is tackled with a ``classical'' bilayer shallow model that serves to any flow regime, weak or strong, with the particularity of converging to the previous SVE problem for the slow regime. This model presents also an advantage from a numerical point of view since the gravitational effects are naturally included in the system. These works have been developed in collaboration with E. Fernández-Nieto, T. Morales and C. Escalante.
L'exposé sera dédié à l'étude d'un système de particules en interaction dont la dynamique est purement stochastique (markovienne), et qui appartient à la famille des processus d'exclusion (i.e. une seule particule autorisée sur chaque site du réseau) avec contraintes cinétiques. Ces contraintes microscopiques sur la dynamique stochastique provoquent une transition de phase vers un état totalement ``absorbant'', lorsque la densité de particules atteint une certaine valeur critique. De plus, le comportement macroscopique de ce système, obtenu après une limite hydrodynamique dans une échelle de temps diffusive, est décrit par une EDP déterministe qui appartient à la famille des problèmes à frontière libre, ou problèmes de Stefan. Ce travail est en collaboration avec O. Blondel, C. Erignoux and M. Sasada et repose sur deux récentes publications.
The purpose of this paper is to investigate the stabilization of a locally coupled wave equations with non smooth localized viscoelastic damping of Kelvin-Voigt type and localized time delay. Using a general criteria of Arendt-Batty, we show the strong stability of our system in the absence of the compactness of the resolvent. Finally, using frequency domain approach combined with the multiplier method, we prove a polynomial energy decay rate of order 1/t.
Consider the following Communication Complexity problem: Alice is given a clique K, Bob is given a stable set S, and they have to decide via a non-deterministic protocol whether K intersects S or not. A certificate for the non-intersection is a bipartition of the vertices such that K is included in one side, and S is included in the other side. A Clique-Stable set Separator is a set of certificates which contains at least one suitable certificate for each input (K,S). Given a class of graphs, the goal is to know whether there exists, for every graph of the class, a Clique-Stable set Separator with only polynomially many certificates. This question, originally restricted to the case of perfect graphs, occurred to Yannakakis when studying extended formulations of the Stable set Polytope (a polytope P has a small extended formulation if it is the projection of a polytope Q lying in a higher dimensional space, with a small number of facets). A result by Göös provides a super-polynomial lower bound for the class of all graphs, but the case of perfect graphs is still open. We use different techniques to prove that a polynomial Clique-Stable set separator exists in restricted classes of graphs: probabilistic arguments for random graphs, VC-dimension for graphs where a split graph H is forbidden, and structural arguments for some other classes. We moreover highlight strong links between the Clique-Stable set Separation and other problems, including some Constraint Satisfaction Problems.
L'algèbre géométrique ou algèbre de Clifford offre un cadre algébrique intuitif pour la représentation d'objets géométriques et leurs transformations géométriques. Cette algèbre est le résultat de la généralisation de l'algèbre de Grassmann et des quaternions de Hamilton. Le développement de son utilisation pour les problèmes en géométrie discrète et en vision par ordinateur est relativement récent. Dans ce contexte, nous nous sommes intéressés à une implantation efficace de l'algèbre géométrique permettant une utilisation dans les espaces vectoriels de hautes dimensions. Nous avons notamment proposé un formalisme récursif de l'algèbre géométrique sur arbres préfixes en montrant que la définition récursive du produit obtenue vérifiait les propriétés de ce produit. Je montrerai les résultats obtenus en termes de complexité algorithmique. Ces résultats nous ont permis de développer la représentation et la transformation de surfaces quadratiques dans un espace vectoriel de haute dimension. Je montrerai les propriétés et les opérations géométriques possibles dans cet algèbre. En parallèle, nous avons montré que cette algèbre pouvait être utilisée en géométrie digitale pour la représentation des transformations digitales et notamment l'approximation de transformations rigides par des transformations digitales définies avec l'algèbre géométrique. Je montrerai enfin l'atout de cette algèbre pour un problème d'optimisation défini sur des nuages de points.
Dans le contexte de la géométrie discrète et du traitement d'image, la grille hexagonale est souvent considérée intéressante, mais difficile à représenter et à utiliser. Par conséquent, cette grille est moins populaire. Dans cet exposé, je passerai en revue le concept de la grille hexagonale dans le contexte de deux applications. La première est liée aux déplacements rigides discrets définis sur des grilles régulières et à la préservation de l'information sous une telle transformation. En effet, en général, les discrétisations de déplacements rigides ne sont pas bijectives. Néanmoins, certaines sont bijectives, et je vais discuter la caractérisation des rotations discrètes qui sont bijectives sur la grille hexagonale. En fin, je vais comparer les distributions des angles dont les rotations discrétisées sont bijectives dans les grilles hexagonale et carrée. Dans la deuxième partie de mon exposé, je me concentrerai sur les utilisations de la grille hexagonale dans l'architecture et la conception de bâtiments. Depuis un certain temps, on savait que les structures construites à partir de panneaux hexagonaux planaires, sont meilleures que les structures triangulaires en termes de stabilité structurelle et de répartition des contraintes physiques. Dans les structures triangulaires, de telles contraintes (par exemple causées par des chutes de neige) s'accumulent aux sommets. Au contraire, dans le cas des structures hexagonales, ces contraintes sont uniformément réparties sur la structure et transmises par les arêtes. Malheureusement, la conception de maillages hexagonaux planaires est un problème très difficile. Dans cet exposé, je vais passer en revue le problème de la conception de tels maillages hexagonaux planaires et décrire un processus automatique pour le remaillage de maillages triangulaires en maillages hexagonaux planaires.