Une généralisation de la règle de Descartes en plusieurs variables


Frédéric Bihan, LAMA. 21 février 2014 10:00 geo
Abstract:

La règle de Descartes borne le nombre de racines positives d'un polynôme réel en une variable par le nombre de changements de signe consécutifs de ses coordonnées dans la base monomiale (ordonnée suivant les puissances croissantes). La borne obtenue est optimale et généraliser la règle de Descartes aux systèmes polynomiaux en plusieurs variables est un problème très difficile. Dans un travail avec Alicia Dickenstein (Université de Buenos Aires), nous avons obtenu la première généralisation de la règle de Descartes en plusieurs variables. Notre règle s'applique aux systèmes polynomiaux en un nombre arbitraire n de variables dont le support consiste en n+2 monômes quelconques et est également optimale. Elle borne le nombre de solutions positives d'un tel système par un nombre de changements de signe obtenus en considérant des mineurs maximaux de la matrice des coefficients ainsi que de celle des exposants du système.