Voronoi-based Geometric Inference


Louis Cuel, LAMA. 20 novembre 2014 10:00 limd
Abstract:

Ces travaux s'inscrivent dans la thématique de l'inférence géométrique dont le but est de répondre au problème suivant : étant donné un objet géométrique dont on ne connaît qu'une approximation, peut-on estimer de manière robuste ses propriétés? On se place dans le cas où l'approximation est un nuage de points ou un ensemble digital dans un espace euclidien de dimension finie. On montre un résultat de convergence multigrille d'un estimateur du Voronoi Covariance Measure qui utilise des matrices de covariance de cellules de Voronoi. Ce résultat, comme la plupart des résultats en inférence géométrique, utilisent la stabilité de la fonction distance à un compact. Cependant, la présence d'un seul point aberrant suffit pour que les hypothèses des résultats de stabilité ne soient pas satisfaites. La distance à une mesure est une fonction distance généralisée introduite récemment qui est robuste aux points aberrants. Dans ce travail, on généralise le Voronoi Covariance Measure à des fonctions distances généralisées et on montre que cet estimateur appliqué à la distance à une mesure est robuste aux points aberrants. On en déduit en particulier un estimateur de normale très robuste. On présente également des résultats expérimentaux qui montrent une forte robustesse des estimations de normales, courbures, directions de courbure et arêtes vives. Ces résultats sont comparés favorablement à l'état de l'art.