Trois contre-exemples à une conjecture de Wilkie. (Travail commun avec G. Jones, J. Kirby et T. Servi)


Olivier Le Gal, Université de Savoie, LAMA. 16 octobre 2014 14:00 geo 2:00:00
Abstract:

Motivé par l'étude de la théorie du corps des nombres complexes avec exponentielle, et remarquant que les fonctions définissables y sont, une fois C identifié à R^2, localement sous-analytiques, Wilkie entame une étude systématique des réduites de R_an engendrées par des fonctions holomorphes restreintes. Il propose la conjecture ci-dessous. Soit A une famille de fonctions holomorphes, et notons R_A| la structure (o-minimale) engendrée par les parties réelles et imaginaires des fonctions de A restreintes aux pavés relativement compacts de leurs domaines. Conjecture (Wilkie 08) : Les fonctions holomorphes localement définissables dans R_A| sont toutes obtenues à partir de A et des polynômes par composition, réflexion de Schwartz, dérivation partielle et prise de fonction implicite. On donnera trois contre-exemples à cette conjecture, qui chacun montre qu'une opération supplémentaire est nécessaire pour obtenir toutes les fonctions localement définissables : la division monomiale, la composition avec les racines n-iemes, et les effondrements. Si le temps le permet, on montrera aussi que ces trois opérations sont, en un certain sens, suffisantes.