Une introduction à l'analyse (microlocale) non archimédienne


Michel Raibaut, LAMA, Université de Savoie. 27 mars 2015 15:15 edp 2:00:00
Abstract:

Dans cet exposé, nous commencerons par définir l'espace métrique des nombres p-adiques comme complété du corps des rationnels pour la valeur absolue p-adique. Cette distance vérifie l'inégalité ultramétrique ce qui induit des propriétés topologiques très différentes de la topologie réelle. Néanmoins les boules sont compactes et il existe une mesure de Haar. On peut alors définir une intégrale et développer une analyse harmonique similaire à la théorie classique réelle. Nous donnerons ensuite l'exemple de l'espace métrique des séries formelles à coefficients complexes muni de sa distance t-adique. Dans ce contexte les boules ne sont plus compactes mais il existe néanmoins une théorie de l'intégration et une notion de finitude fournie par des théorèmes de logique. Nous esquisserons cela. Nous rappellerons enfin la notion de front d'onde d'une distribution à la Hormander en analyse réelle et nous conclurons l'exposé en donnant les idées de construction de son analogue dans les cadres ultramétriques précédents. L'esprit de cet exposé sera celui d'un colloquium, où l'on présentera en priorité des idées et des exemples.