Directed algebraic topology is a young subject which takes inspiration from homotopy theory and concurrent processes. Differently from algebraic topology, it studies situations in which paths are, in general, not invertible. For this reason directed algebraic topology is particularly suitable for modelling non-reversible phenomena like concurrent processes, where processes do not reverse. In this talk, based on [1], I start from concurrent processes and show how directed algebraic topology is a natural model for it. [1] Martin Raussen, ``Contributions to Directed Algebraic Topology: with inspirations from concurrency theory'', Doctoral Thesis, Department of Mathematical Sciences, Aalborg University.