Comment caractériser les germes de fonctions indéfiniment différentiables qui sont entièrement déterminés, modulo un changement de variable lisse, par leur série de Taylor à l’origine, ou leur jet sur un fermé ? Dans le cas de germes à point critique isolé, le problème est parfaitement compris depuis les années 70 -- il s’agit en quelque sorte d’une variante "d’ordre infini" de la notion de jet suffisant (selon la terminologie de Thom) ou de détermination de germes (selon celle de Mather). Il en va autrement pour les singularités non isolées, où une caractérisation est connue seulement dans des cas très particuliers. On présentera un résultat sensiblement plus général.