Seminormalisation et fonctions régulues sur des variétés affines complexes


François Bernard, LAREMA (Angers). 18 novembre 2021 16:00 geo
Abstract:

Soit X une variété algébrique affine complexe. La ``seminormalisation de X'' est une variété algébrique X^+ obtenue en recollant les points de la normalisation se trouvant au-dessus d’un même point de X. L'un des intérêts de la seminormalisation provient du fait qu’elle possède des singularités particulières tout en restant liée à X par un homéomorphisme fini et birationnel. Le résultat principal que nous présenterons est qu'il y a un isomorphisme entre l'anneau des fonctions polynomiales sur X^+(C) et l'anneau des fonctions rationnelles de X qui s'étendent par continuité euclidienne sur X(C). Nous donnerons quelques caractérisations de ce type de fonctions, parlerons de leur lien avec les fonctions régulues et enfin nous nous en servirons pour construire quelques exemples de seminormalisations.