La géométrie tropicale est un outil puissant qui permet via l'utilisation d'un théorème de correspondance de ramener des problèmes énumératifs algébriques, par exemple compter le nombre de courbes d'un certain degré passant par un nombre de points convenables, à un problème combinatoire. Ces derniers sont plus simples à appréhender mais parfois compliqués à résoudre. De plus, le passage dans le monde tropical permet de définir de mystérieux invariants dits raffinés, obtenus en comptant les solutions d'un problème énumératif avec des multiplicités polynomiales. Dans cet exposé on s'intéressera à l'énumération de courbes et aux invariants raffinés dans les surfaces abéliennes et dans les fibrés en droites au dessus d'une courbe elliptique. Lien visio : https://zoom.us/j/95789309400?pwd=NzM0SlNBKzhEMi9qK3dUdHhNWlo4QT09