Comportements asymptotiques de courbes rationnelles


Loïs Faisant, Institut Fourier (Grenoble). 7 avril 2022 16:00 geo
Abstract:

En géométrie diophantienne, le principe de Batyrev-Manin-Peyre décrit conjecturalement le comportement du nombre de points rationnels de hauteur bornée d’une variété de Fano définie sur un corps de nombres, lorsque ladite borne tends vers l’infini. Étant donnée une variété de Fano sur C, un analogue géométrique de ce principe consiste à considérer l’espace de modules des courbes rationnelles de « grand degré » dans cette variété. Un cadre naturel pour une telle étude est celui de l’intégration motivique ; il s’agit alors de questionner la convergence, après une normalisation adéquate dans l’anneau d’intégration motivique, de la classe de l’espace de module des courbes de degré arbitrairement grand. Il est de plus attendu que son hypothétique limite puisse être décrite par un produit eulérien motivique, jouant ainsi le rôle du nombre de Tamagawa défini par Peyre dans le cadre arithmétique. Dans cet exposé, on présentera les grandes lignes qui mènent à l’énoncé d’un tel principe et à la description de la limite attendue, en illustrant par des exemples pour lesquels le résultat est connu. Puis on montrera qu’affiner ce principe, en introduisant une notion d’équidistribution de courbes, ouvre la voie à de nouveaux résultats.