Prolongement d’une fonction analytique : le cadre sous-analytique global, d’après E. Bierstone.


Serge Randriambololona, LAMA. 11 juin 2004 10:30 geo 2:00:00
Abstract:

Soit f : U -> R une fonction analytique, dont le graphe est sous-analytique global.
Dans "Control of radii of convergence and extension of subanalytic functions" (Proc. Amer. Math. Soc. 132 (2004)), E. Bierstone prouve que si U est ouvert alors $Sigma$, l’ensemble des points adhérents à U en lesquel f se prolonge en une fonction analytique, est un ensemble sous-analytique global et qu’on peut prolonger f dans un voisinage sous-analytique (global) de $overline{U} $.

Ce résultat se prouve, à l’aide du théorème d’uniformisation d’Hironaka, en utilisant l’idée de Malgrange d’étude des points graphiques: on parvient à prolonger les relation formelles obtenues en les points réguliers de l’uniformisation et même à controler les rayons de convergence de ces séries, en utilisant les résultats d’A. Mouze "Sur la composition de séries formelles à croissance contrôlée. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 (2002), no. 1.".