Un polynome P(z) a coefficients reels en 1 variable est hyperbolique si toutes ses racines sont reelles. Considerons une famille P(x,z) de polynomes hyperboliques en z avec coefficents analytiques en parametre x.
Si x est 1 parametre (cad. xin R) alors on sait d’apres Rellich 1937 (voir aussi Kato) qu’on peut choisir les racines de P analytiques en x.Mais lorsque x est a un multiparametre (cad. xin R^n, n>1) c’est ne plus vrai.
Łojasiewicz a conjecture en 1998 qu’on peut choisir les racines de P de facons lipschitzienns. Avec L. Paunescu (Sydney) nous avons trouve recement une preuve de la conjecture. On obtient comme corollaire un resultat celebre de Lidskii que la fonction spectrale sur l’espace de matrices symmetriques est lipschitzienne. Si le temps permets j’ai parlerai d’une generalization d’un autre resultat de Rellich (1937) selon lequel on peut diagonaliser analytiquement une famille analytique de matrices symetriques lorsque la famille depend d’un parametre. Il semble que dans le cas a plusieurs parametres il n’y avait pas de progres depuis (voir Kato "Perturbation theory for linear Operators"). J’expliquerai comment on peut le faire en effet dans les cas de multiparametre.