Nous montrons qu'il existe un ensemble de Canotor $Csubset [0,1]$ tel que pour toute application semi-algébrique bornée $f:Uto R^k, ou $Usubset R^n$, l'image $f(Ucap C^n$ est de dimension entropique nulle. Donc en particulier $f(Ucap C^n$ est nulle part dense dans $R^k$, ceci donne la réponse positive à une question de C. Miller motivée par des extensions récentes (structures d-minimales) de la théorie de structures o-minimales. L'argument est basé sur la structure conique '' aiguë '' de $C^n$ et sur une inégalité du type de Lojasiewicz, qui permet de contrôler la norme de la différentielle de $f$ par l'inverse de la distance au bord.