Dans $R^n$, avec une distribution algébrique donnée, on définit le gradient horizontal d'un polynôme, la projection du gradient de ce polynôme sur la distribution. On va donner (si le temps le permet) - quelques propriétés de base du gradient horizontal, - des exemples montrant que + longueur de trajectoires de gradient horizontal n'est pas forcément bornée, + des trajectoires de gradient horizontal peuvent avoir de cycles limites, - sous certaines conditions de généricité, par un changement de métrique, on peut montrer que longueur de trajectoires de gradient horizontal est bornée et que les trajectoires possèdent de limites.