On considérera la distance associée à la norme de Bombieri sur l'ensemble des polynômes homogènes réels de degré d à n variables. On montrera que si le niveau P=0 est lisse et extremal (on ne peut pas ajouter de composante à P=0 sans changer le degré) alors la distance au discriminant réel (l'ensemble des polynomes Q réels avec au moins une singularité réelle) est min{ |P(x)| ; x dans S^{n-1}, x point critique de P} On en déduira une inégalité entre la taille des composantes connexes de P=0 et la distance au discriminant.