Un résultat de o-minimalité sous des hypothèses génériques


Olivier Le Gal, LAMA. 18 septembre 2009 10:15 geo 2:00:00
Abstract:

On s’intéresse aux structures R_f = (R,+,*,<,f) engendrées par une fonction C^\infty f restreinte à un compact. L’objet de cet exposé est de montrer que pour une fonction f générique, la structure R_f est o-minimale. On exibera en effet une condition explicite sur les développements de Taylor de f qui implique la o-minimalité de R_f et est générique au sens de Whitney. L’essentiel de la preuve consiste a établir la quasi-analyticité de certaines algèbres differentielles engendrées par f. Ce résultat permet d’obtenir très simplement les corollaires suivants (les deux premiers étant déjà connus) : 1. Il existe des structures o-minimales n’admettant pas la propriété de décomposition analytique. 2. Il existe des structures o-minimales incompatibles (au sens où elles ne sont pas des restrictions d’une même structure o-minimale) 3. Il existe des structures o-minimales incompatibles avec les sous-analytiques.