Surfaces algébriques affines avec un ``gros'' groupe d'automorphismes


Adrien Dubouloz, Dijon. 23 avril 2010 10:15 geo 2:00:00
Abstract:

(Travail en commun avec J. Blanc) La richesse du groupe d'automorphisme d'une surface algébrique affine (lisse) S est intimement liées à l'existence de familles de courbes rationnelles affines sur S : ainsi, si S admet ``peu'' de courbes rationnelles, la composante neutre de son groupe d'automorphisme est un tore de dimension au plus 2. A contrario, si S est couverte par une famille de courbes rationnelles, alors sont groupe d'automorphisme est en général de dimension infinie, en particulier, non algébrique. Dans cet exposé, on s'intéressera plus en détail au cas des surfaces rationnelles et l'on expliquera comment ont peut préciser un peu la structure de leurs groupes d'automorphisme via l'étude des différents réglagles de ces surfaces par des courbes rationnelles.