Soit M ⊂ R^n une sous-variété analytique lisse. Si on note d(x, M) la distance euclidienne de x à M , alors il existe un voisinage U ⊃ M tel que pour tout x ∈ U on ait d(x, M ) = ||x−m(x)|| pour un unique point m(x) ∈ M et la fonction m : U → M qui en résulte est analytique. Ce simple fait classique et utile sera le point de départ de l'exposé dans lequel nous essayerons de répondre à la question suivante : qu’advient-il si on permet à M d’avoir des singularités ? Autrement dit, on tâchera d’obtenir un résultat similaire dans le cas où M est un ensemble sous-analytique compact ou encore définissable dans une structure o-minimale.