Les travaux que je présenterai sont ceux effectués lors de ma thèse. Ils s'inscrivent dans le cadre de la géométrie discrète, une discipline ayant pour objectif de définir un cadre théorique pour transposer dans Z^n les bases de la géométrie euclidienne -- les notions discrètes définies étant le plus proche possible des notions continues que nous connaissons (telles que distance, droite, convexité, ...). De nombreuses études ont déjà été menées au sein de cette discipline, pour en définir l'espace de travail ainsi que les objets fondamentaux manipulés et en saisir leurs propriétés. Des algorithmes de reconnaissance pour ces primitives discrètes ont été développés et utilisés dans des problèmes comme la reconnaissance de formes, l'extraction de caractéristiques géométriques et bien d'autres encore. Néanmoins, la majorité des études ont été effectuées en se reposant sur la régularité des structures fondamentales de l'espace discret, souvent issues de définitions arithmétiques, et ces critères de régularité sont généralement essentiels aux différents algorithmes développés. Or, en pratique, les objets manipulés sont très souvent bruités par les méthodes d'acquisition (scanners, IRM, ...) qui suppriment ce caractère régulier des objets. Dans cet exposé, nous nous intéressons aux objets discrets 3D et proposons une primitive discrète, le morceau flou de plan discret, destinée à apporter plus de flexibilité dans les traitements, afin de concevoir des algorithmes capables de fournir des résultats satisfaisants aussi bien sur des objets réguliers que non réguliers. Avec l'emploi de cette nouvelle primitive discrète, nous définissons différents estimateurs de caractéristiques géométriques au bord d'objets discrets et montrons comment les utiliser dans des problèmes de segmentation et de polyédrisation d'objets discrets possiblement bruités.