Le site sous-analytique et la correspondance de Riemann-Hilbert


Giovanni MORANDO, Université de Padoue (Italie). 25 mars 2011 10:15 geo 2:00:00
Abstract:

La correspondance de Riemann--Hilbert est un résultat très profond qui donne une équivalence entre la catégorie de certains systèmes d'équations différentiells linéaires et celle de certains faisceaux sur une variété analytique. La première catégorie est de nature analytique et est composée des équations, appelées régulières, avec des conditions de croissance modérée pour les solutions. La deuxième est de nature topologique et combinatoire et est constituée de faisceaux localement constants sur les strates d'une stratification analytique. Le cas irrégulier est beaucoup plus difficile. Il est connu localement en dimension 1 et d'importants résultats ont été très récemment démontrés en dimension supérieure par C. Sabbah, T. Mochizuki et K. Kedlaya. Nous introduirons ces sujets d'une faccon très concrète à travers une suite d'exemples explicatifs. Puis nous introduirons le site sous-analytique et les fonctions holomorphes temps définies par M. Kashiwara et P. Schapira en 2001 se basant sur des travaux de S. Lojasiewicz. Nous expliquerons comment ces nouveaux objets permettent d'améliorer les résultats classiques. La géométrie sous-analytique se révèle etre essentielle et très utile pour définir des invariants globaux en toute dimension. Si le temps le permet, nous expliquerons les relations étroites de ces objets avec le spectre réel défini par M. Coste et M.F. Roy et les espaces de Berkovich et Huber.