On commencera par introduire la géométrie tropicale, qui est de la géométrie algébrique à saveur combinatoire.Ensuite on expliquera une stratégie tropicale pour démontrer des théorèmes portantsur le nombre de courbes rationnelles sur une hypersurface générale complexe.Puis on se concentrera sur le cas d'une surface quintique dans P^3: H. Clemens a démontré qu'une telle quintique suffisamment générale n'a aucune courbe rationnelle. On expliquera notre progrès vers une démonstration purement tropicale de ce résultat. Nos méthodes suggèrent une voie potentielle vers une démonstration de la célèbre conjecture de Clemens qui prévoit que toute courbe rationnelle sur une quintique générale dans P^4 est rigide.