On s'intéresse à trouver la constante optimale pour l'immersion de l'espace W^{2,1}_Delta(Omega) qui est l'ensemble des u dans W^{1,1}_0(Omega) tel que Delta u appartienne à L^1(Omega) dans L^1(Omega) où Omega est un domaine borné de R^n avec frontière de classe C^{1,1}. Ceci est équivalent à trouver la première valeur propre de l'opérateur 1-biharmonique avec conditions au bord de Navier (généralisées). Dans cet exposé on donne une interpretation du problème aux valeurs propres, on montre une inégalité du type Faber-Krahn, et, si Omega est une boule, on calcule explicitement la première valeur propre et la fonction propre associée. Les résultats ont été obtenus en collaboration avec Bernhard Ruf et Cristina Tarsi (Université degli Studi di Milano)