TRAVELING WAVES IN AXISYMMETRIC NAVIER STOKES FLOWS


Francesco FEDELE, School of Civil and Environmental Engineering and School of Eletrical and Computer Engineering Georgia Institute of Technology, . 10 juillet 2012 14:00 edp 2:00:00
Abstract:

In this work we attempt to explore the hypothesis of a Navier–Stokes pipe flow defined as a nonlinear sea state of interacting coherent wave structures of soliton-bearing equations. Such sea states may, for example, explain the occurrence of steady ‘puffs’ observed in both numerical simulations and experiments of turbulent pipe flows. Indeed, the puff dynamics appears to be similar to that of a soliton. This loses energy as it interacts withthe background or other solitons, and it delocalizes in space by splitting into many other smaller solitons, leading to a solitonic sea state. We thus present an analysis of the weakly nonlinear dynamics of axisymmetric Poiseuille pipe flows. We will show that small perturbations of the laminar flow obey a coupled system of nonlinear Korteweg–de Vries-type/Camassa-Holmes equations. To leading order, these support inviscid soliton-type solutions and periodic waves in the form of toroidal vortex tubes that, due to viscous effects, slowly decay in time. Their physical interpretation in terms of flow patterns and vorticity dynamics is finally discussed.