A series of recent papers introduces a coalgebraic semantics for logic programming, where the behavior of a goal is represented by a parallel model of computation called coinductive tree. This semantics fails to be compositional, in the sense that the coalgebra formalizing such behavior does not commute with the substitutions that may apply to a goal. We suggest that this is an instance of a more general phenomenon, occurring in the setting of interactive systems (in particular, nominal process calculi), when one tries to model their semantics with coalgebrae on presheaves. In those cases, compositionality can be obtained through saturation. We apply the same approach to logic programming: the resulting semantics is compositional and enjoys an elegant formulation in terms of coalgebrae on presheaves and their right Kan extensions.