Un polynôme non nul de degré d a au plus d racines complexes. Mais on sait, depuis les travaux de Descartes, que le nombre de monômes est lui aussi un paramètre limitant du nombre de racines réelles. Plus précisément, un polynôme avec t monômes a au plus 2t-1 racines réelles. Que se passe t'il maintenant si l'on considère les solutions d'un système de polynômes? Dans, le cas complexe, le théorème de Bézout permet de borner leur nombre par le produit des degrés. Mais dans le cas réel, existerait-il une borne supérieure ne dépendant que des nombres de monômes? Et dans ce cas, quelle est cette borne? Le problème de l'existence a été résolue par Khovanskií, mais la question de son ordre de grandeur reste grandement ouverte. Un cas particulier connu comme le problème de Sevostyanov est celui d'un système composé d'un polynôme de degré d et d'un polynôme t-creux. Nous présenterons dans cet exposé, une borne polynomiale en t et en d pour ce problème..