Séminaires de l'année


Lien ical.

Nicolas Popoff, Centre de physique Théorique de Marseille. 2:00:00 20 décembre 2013 14:00 edp
Sur le bas du spectre du Laplacian magnétique dans des domaines à coins
Abstract

Dans cet exposé nous nous intéressons au Laplacien magnétique semi-classique dans des domaines polyédraux de dimension 3. Motivés par le phénomène de supraconductivité de surface pour des champs magnétiques de grande intensité, nous cherchons à déterminer le comportement asymptotique de la première valeur propre lorsque le paramètre semi-classique tend vers 0. Nous montrons que le comportement de la première valeur propre est gouverné par une hiérarchie de problèmes modèles définis sur les cônes tangents au domaine. Nous obtenons le premier terme de l'asymptotique de la première valeur propre ainsi qu'une estimation du reste. Il s'agit d'un travail en collaboration avec Monique Dauge et Virginie Bonnaillie-Noël

Aurélien Greuet, Université de Lille. 2:00:00 19 décembre 2013 15:30 geo
Optimisation polynomiale et variétés polaires : théorie, algorithmes et implantations
Abstract

Le calcul de l'infimum global $f^star$ d'un polynôme à $n$ variables sous contraintes est une question centrale qui apparaît dans de nombreux domaines des sciences de l'ingénieur. Pour certaines applications, il est important d'obtenir des résultats fiables. De nombreuses techniques ont été développées dans le cas où les contraintes sont données par des inéquations polynomiales. Dans cet exposé, on se concentre sur le problème d'optimisation d'un polynôme à $n$ variables sous des contraintes définies par des équations polynomiales à $n$ variables. Le but est d'obtenir des outils, algorithmes et implémentations efficaces et fiables pour résoudre ces problèmes d'optimisation. La stratégie est de ramener le problème d'optimisation sous des contraintes qui définissent des ensembles algébriques de dimension quelconque à un problème équivalent, sous des nouvelles contraintes dont on maîtrise la dimension. La variété algébrique définie par ces nouvelles contraintes est l'union du lieu critique du polynôme objectif et d'un ensemble algébrique de dimension au plus $1$. Pour cela, on utilise des objets géométriques définis comme lieux critiques de projections linéaires. Grâce au bon contrôle de la dimension, on prouve l'existence de certificats pour des bornes inférieures sur $f^star$ sur nos nouvelles variétés. Ces certificats sont donnés par des sommes de carrés et on ne suppose pas que $f^star$ est atteint. De même, on utilise les propriétés de nos objets géométriques pour concevoir un algorithme exact pour le calcul de $f^star$. S'il existe, l'algorithme renvoie aussi un minimiseur. Pour un problème avec $s$ contraintes et des polynômes de degrés au plus $D$, la complexité est essentiellement cubique en $(sD)^n$ et linéaire en la complexité d'évaluation des entrées. L'implantation, disponible sous forme de bibliothèque Maple, reflète cette complexité. Elle a permis de résoudre des problèmes inatteignables par les autres algorithmes exacts.

Olivier Bodini, Laboratoire d'Informatique de Paris-Nord. 2:00:00 19 décembre 2013 10:00 limd
Eléments de combinatoires analytiques pour l'analyse asymptotique et la génération aléatoire uniforme de convexes discrétisés
Abstract

Nous introduirons dans cet exposé quelques concepts de combinatoires analytiques (méthode symbolique, Théorèmes de transfert, Transformations de Mellin) et tenterons de montrer en quoi cette approche peut être utile pour certains problèmes de géométrie discrète. Plus particulièrement, nous nous intéresserons à l'étude asymptotique du nombre de convexes discrétisés de périmètre n. Cet exposé repose sur l'article ``Asymptotic Analysis and Random Sampling of Digitally Convex Polyominoes'', travail en commun avec P. Duchon, A. Jacquot et L. Mutafchief.

J. Valles, Université de Pau. 2:00:00 13 décembre 2013 10:00 geo
La combinatoire détermine-t-elle la liberté d'un arrangement de droites ?
Abstract

Un ensemble fini de sous espaces affines de codimension un d'un espace vectoriel donné est un arrangement d'hyperplans. L'étude des arrangements est un sujet très classique, au carrefour de nombreux domaines des mathématiques comme la combinatoire, la topologie ou la géométrie algébrique. Voici une liste non exhaustive de questions très élémentaires qui sont à l'origine du sujet et qui motivent les travaux le concernant : - ``En combien de régions n droites peuvent diviser le plan ?'' (Roberts 1889, Arnol'd) - Quelles configurations droites/points sont réalisables ? - Combien de pentes sont définies par n points distincts ? (Ungar) - Le problème de Sylvester-Gallai (montrer qu'un ensemble fini de points plans ne possédant pas de bisécante stricte est aligné), - Est-ce qu'un arrangement est déterminé par sa combinatoire ? Je parlerai de la conjecture de Terao (1981 ou 1991) qui concerne plus particulièrement le dernier point (les autres points seront eux aussi abordés). Avec Daniele Faenzi (Univ. Pau) nous avons démontré cette conjecture sur le plan projectif réel ou complexe avec une hypothèse supplémentaire sur les points multiples de l'arrangement. Je présenterai les grandes lignes de notre preuve et surtout de notre approche, radicalement nouvelle par rapport aux approches classiques.

Laurent Chupin, Université Blaise Pascal. 2:00:00 6 décembre 2013 14:00 edp
Krzysztof Kurdyka, LAMA. 2:00:00 6 décembre 2013 10:00 geo
Convexification des polynômes positifs et approximation par des sommes des carres
Abstract

For a positive polynomial $fin mathbb{R}[x_1,ldots,x_n]$ we give necessary and sufficient conditions to existence of an exponent $Ninmathbb{N}$ such that $(1+|x|^2)^Nf(x)$ is a convex function, where $|x|^2={x_1^2+cdots+x_n^2}$. Next we show that if $finmathbb{R}[x_1,ldots,x_n]$ is strictly positive on a closed convex basic semialgebraic set $X={xinmathbb{R}^n:g_1(x)ge 0,ldots,g_r (x)ge 0}$, where $g_1,ldots,g_rinmathbb{R}[x_1,ldots,x_n]$ are concave polynomials, then $f$ can be approximated (in the $l_1$ norm) by polynomials of the quadratic module $Q(g_1,ldots,g_r)$. In the case $X=mathbb{R}^n$ the approximation is uniform on compact sets. Joint work with S. Spodzieja.

Johannes Kellendonk, Institut Camille Jordan. 2:00:00 5 décembre 2013 10:20 limd
A characterization of subshifts with bounded powers
Abstract

We say that a subshift, i.e. a closed shift invariant subspace of the space of sequences on a finite alphabet, has bounded powers. If there is an upper bound on the powers n with which words occur in the subshift. This is a strong combinatorial property which, for Sturmian susbshifts, coincides with the fact that the slope has bounded continued fraction expansion. Approximating the subshift space by a family of graphs we obtain a family of metrics which may or may not be Lipschitz equivalent. That latter property turns out to charactise minimal subshifts which have bounded powers.

Erwan Brugallé, École polytechnique. 2:00:00 29 novembre 2013 10:00 geo
Invariants de Welschinger des surfaces algébriques réelles rationnelles
Abstract

Les invariants de Welschinger sont un analogue réel des invariants de Gromov-Witten, et fournissent des bornes inferieures non triviales en géométrie énumérative réelle. Je rappelerai leur définition, puis expliquerai comment les calculer dans le cas des surfaces algebriques réelles rationnelles. Les méthodes principalement utilisées sont la théorie symplectique des champs, pour découper la variété ambiante en morceaux, et une version réelle des équations WDVV établie par Jake Solomon. Cet exposé porte sur deux travaux, l'un en collaboration avec Nicolas Puignau, l'autre en collaboration avec Jake Solomon.

Pierre-Étienne Meunier, Caltech. 2:00:00 28 novembre 2013 10:00 limd
Complexité de pavages auto-assemblants
Abstract

Les pavages auto-assemblants sont un modèle d'assemblage de structures moléculaires, implémentables avec de l'ADN, et capables de calcul Turing. J'expliquerai dans cet exposé deux bornes inférieures de complexité, dans le cas des systèmes d'assemblage non-coopératif (aussi appelés ``température 1'') : une sur les capacités de simulation intrinsèque du modèle, et l'autre sur la complexité d'assemblage de carrés de taille arbitraire.

JERAA, Rhône Alpes Auvergne. 2:00:00 22 novembre 2013 14:00 edp
JERAA
Abstract
Christophe Raffalli, LAMA. 2:00:00 22 novembre 2013 10:00 geo
Distance au discriminant réel et hypersurfaces extrémales
Abstract

Le discriminant réel est l'ensemble des polynômes homogènes à coefficients réels et pourvus d'au moins une singularité réelle. La norme de Bombieri permet de donner une formule explicite pour la distance au discriminant dont l'étude permet d'obtenir des résultats intéressants en particulier sur les hypersurfaces extrémales (maximum locaux pour la somme des nombres de betti). On définira par exemple la bande critique (la bande la plus large définie par { x in |R^n | ||x|| = 1 et |P(x)| < m} et ne contenant aucun point critique de P) et on montrera que cette bande a une largeur bornée par Pi/sqrt(d) où d est le degré de P lorsque le niveau 0 de P est extrémal. On en déduira une borne (pas très bonne) pour la plus petite valeur critique de P. On regardera le cas particulier de la dimension 0 (polynome homogène à deux variables) où l'on peut trouver une borne optimale de la plus petite valeur critique pour les polynomes de degré d à d racines.

Sébastien Labbé, LIAFA. 2:00:00 21 novembre 2013 10:00 limd
Construction de droites discrètes 3D par des suites S-adiques
Abstract

Les droites discrètes en 2D sont bien connues et possèdent plusieurs définitions équivalentes (combinatoire, arithmétique, dynamique). Toutefois, en dimension supérieure, ces définitions ne sont pas équivalentes et donnent lieu à des concepts différents : les mots de billards, les codages de rotations, les échange d'intervalles, le modèle standard de la droite discrète d'Éric Andres. Aucune de ces définitions de droites discrètes 3D ne conserve toutes les bonnes propriétés des droites discrètes 2D (suite équilibrée, complexité en facteurs linéaire). L'approche que nous considérons est la construction de droites discrètes par un produit de substitutions appelé suite S-adique selon la terminologie de Vershik et Livshits (1992). La suite de substitutions est déterminée par un algorithme de fractions continues multidimensionnelles donnant une suite d'approximations diophantiennes d'un vecteur de nombres réels. De récents résultats montrent qu'on peut construire des suites équilibrées (Delecroix, Hejda, Steiner, 2013) et de complexité linéaire en facteurs (Berthé, Labbé, 2013) avec cette approche.

A. Giacomini, Université de Brescia, Italie. 2:00:00 15 novembre 2013 14:00 edp
Quasi-static evolutions in perfect plasticity for heterogeneous materials
Abstract

I will present some results in collaboration with G. Francfort concerning quasi-static evolutions for linearly-elastic perfectly-plastic for multi-phase materials. The mathematical framework adopted is that of the variational approach to rate independent evolutions formalized by A. Mielke and his collaborators. The focus is on the dissipation properties of the interfaces which leads to lower semicontinuity problems in the space of Radon measures.

Hervé Pajot, Université de Grenoble I. 2:00:00 14 novembre 2013 15:00 labo
Courbure et inégalités de Poincaré
Abstract

Un résultat maintenant classique (et souvent attribué a Peter Buser) dit que toute variété riemannienne complète à courbure de Ricci positive admet des inégalités de Poincaré. Dans cet exposé, on essayera de donner/proposer des analogues du théorème de Buser dans le cas des espaces métriques continus (espace géodésiques) ou discrets (graphes).

Michaël Rao, ENS Lyon. 2:00:00 14 novembre 2013 10:00 limd
Quelques petits résultats et encore beaucoup de conjectures sur la suite de Kolakoski/Oldenburger
Abstract

La suite de Kolakoski, introduite - comme son nom ne le dit pas - par R. Oldenburger en 1939, est une suite auto-descriptive simple. Il s'agit de la suite 'w' sur l'alphabet {1,2} qui est égale à son propre ``run-length-encoding'' RLE(w). La ième lettre de RLE(w) est la taille du ième bloc de 'w', un bloc étant une répétition d'une même lettre. Cette suite commence donc par 12211212212211... Malgré sa définition simple, beaucoup de conjectures concernant cette suite sont ouvertes depuis une trentaine d'années. Il y a notamment la conjecture que la densité de 1 dans 'w' est 0.5. Concernant cette conjecture, la meilleure borne supérieure de 0.50084 a été donnée par V. Chvátal en 1993. Dans cet exposé, on verra cette suite comme un point fixe d'un transducteur. En prenant les puissances de ce transducteur, on obtiendra une nouvelle borne sur la densité. Cela nous permet également d'avoir un algorithme qui a permis d'explorer les 10^19 premières lettres de la suite. On finira par quelques nouvelles conjectures et questions sur cette suite.

Emmanuel Beffara, Institut de Mathématiques de Luminy. 2:00:00 7 novembre 2013 10:00 limd
Proofs as schedules
Abstract

This paper proposes a new interpretation of the logical contents of programs in the context of concurrent interaction, wherein proofs correspond to valid executions of a processes. A type system based on linear logic is used, in which a given process has many different types, each typing corresponding to a particular way of interacting with its environment and cut elimination corresponds to executing the process in a given interaction scenario. A completeness result is established, stating that every lock-avoiding execution of a process in some environment corresponds to a particular typing. Besides traces, types contain precise information about the flow of control between a process and its environment, and proofs are interpreted as composable schedulings of processes. In this interpretation, logic appears as a way of making explicit the flow of causality between interacting processes. Joint work with Virgile Mogbil.

Clovis Eberhar, ENS Cachan. 2:00:00 31 octobre 2013 10:00 limd
Relation entre parsing et pretty-printing
Abstract

Le parsing et le pretty-printing sont des opérations omniprésentes en informatique : communications entre machines ou entre processus, interfaces homme-machine, etc. Il semble évident que les parser et pretty-printer sont liés par une relation de cohérence, mais elle n'a jamais été mise en évidence. En conséquence, pour faire une preuve formelle utilisant un parser et un pretty-printer (par exemple d'un protocole de communication), il faut deviner une relation vérifiée par cette paire avant la prouver, ce qui rend la preuve difficile. Dans cet exposé, on donnera une définition de la cohérence entre un parser et un pretty-printer et on esseaira de la motiver.

Olivier Legal, LAMA. 2:00:00 25 octobre 2013 10:00 geo
Réalisation de courbes formelles invariantes
Abstract

Suite de l'exposé précédent

Florian Hatat, Université de Savoie. 2:00:00 23 octobre 2013 13:30 limd
Jeux graphiques et théorie de la démonstration
Abstract

Ce travail est une contribution à la sémantique de jeux des langages de programmation. Il présente plusieurs méthodes nouvelles pour construire une sémantique de jeux pour un lambda-calcul de continuations. Si les sémantiques de jeux ont été développées à grande échelle pour fournir des modèles de langages fonctionnels avec références, en appel par nom et par valeur, ou pour différents fragments de la logique linéaire, certains de ses aspects demeurent cependant très subtils. Cette thèse s'intéresse spécifiquement à la notion d'innocence et à la combinatoire mise en jeu dans la composition des stratégies innocentes, en donnant pour chacune une interprétation via des constructions catégoriques standards. Nous reformulons la notion d'innocence en terme de préfaisceaux booléens sur une catégorie de vues. Pour cela, nous enrichissons la notion de parties dans notre sémantique de jeux en ajoutant des morphismes entre parties qui vont au-delà du simple ordre préfixe habituel. À partir d'une stratégie, donnée par les vues qu'elle accepte, on calcule son comportement sur toutes les parties en prenant une extension de Kan à droite. La composition des stratégies innocentes s'appuie sur les notions catégoriques habituelles de systèmes de factorisation et de foncteurs polynomiaux. Notre sémantique permet de modéliser l'interaction entre deux stratégies comme une seule stratégie dont il faut parvenir à cacher les coups internes, grâce à une technique d'élimination des coupures : cette étape est accomplie avec une version affaiblie des systèmes de factorisation. La composition elle-même entre stratégies repose pour sa part sur l'utilisation de la théorie des foncteurs polynomiaux. Les propriétés essentielles, telles que l'associativité ou la correction de la sémantique, proviennent d'une méthode de preuve presque systématique donnée par cette théorie.

Xavier Antoine, IECL, Université de Lorraine. 2:00:00 18 octobre 2013 14:00 edp
Méthodes de décomposition de domaines quasi-optimales pour les ondes harmoniques
Abstract

Le but de cet exposé consiste à développer des méthodes numériques performantes et robustes destinées à résoudre numériquement des problèmes de type diffraction d'ondes (acoustique ou électromagnétique) en régime harmonique à haute fréquence. Il est connu que les systèmes linéaires issus de la discrétisation de tels problèmes par des méthodes d'éléments finis standard sont hautement non définis positifs. En pratique, ils font diverger les solveurs préconditionnés de Krylov (comme le GMRES par exemple). Le but de l'exposé est de développer une méthode alternative, la méthode de décomposition de domaine, et de voir comment l'analyse microlocale joue un rôle crucial pour obtenir des solveurs robustes et efficaces. Plusieurs exemples numériques 2d-3d seront donnés, notamment sur des problèmes de grande taille, la méthode étant adaptée au calcul parallèle. Ces travaux font l'objet de collaborations avec C. Geuzaine, B. Thierry (Université de Liège), M. El Bouajaji (IECN) et Yassine Boubendir (NJIT, USA).