Séminaires de l'année


Lien ical.

Pierre Hyvernat, LAMA. 2:00:00 22 janvier 2015 10:00 limd
Représentation des fonctions continues entre ``streams'' (& Co.) par des types de données
Abstract

(Travail avec Peter Hancock) Brouwer savait déjà que les fonctions continues entre stream (avec la topologie produit habituelle) pouvaient être représentées par des arbres infinis. Peter Hancock a montré comment transformer ce théorème de représentation'' en théorie des types dépendant permettant de manipuler ces fonctions comme un type de données standard. Nous avons récemment pu généraliser ces idées à de nombreux types de données coinductifs en utilisant la notion destructure d'interaction'' (ou container indexé'' oufoncteur polynomial''). J'essaierais d'introduire les notions nécessaire au fur et à mesure : types dépendants, définitions inductives et coinductives, définitions inductive-récursives, etc.

Xavier Urbain, ENSIIE/CNAM. 2:00:00 15 janvier 2015 10:00 limd
Un cadre pour la preuve formelle adapté aux réseaux de robots mobiles
Abstract

Les réseaux de robots mobiles reçoivent depuis quelques années une attention croissante de la part de la communauté de l'algorithmique distribuée. Si l'utilisation d'essaims de robots coopérant dans l'exécution de diverses tâches est une perspective séduisante, l'analyse de la faisabilité de certaines tâches dans ce cadre émergent est extrêmement ardue, en particulier si certains robots présentent des comportements dits byzantins, c'est-à-dire arbitraires voire hostiles.

Pour obtentir des garanties formelles dans ce contexte, nous proposons un cadre mécanique formel fondé sur l'assistant à la preuve Coq et adapté aux réseaux de robots. Nous nous intéressons en particulier aux résultats d'impossibilité, fondamentaux en algorithmique distribuée en ce sens qu'ils établissent ce qui peut ou ne peut pas être réalisé et permettent de définir des bornes et, par là, l'optimalité de certaines solutions. Utiliser un assistant comme Coq travaillant à l'ordre supérieur nous permet d'exprimer aisément des quantifications sur les algorithmes, ceux-ci étant considérés comme des objets abstraits. Nous illustrons les possibilités offertes par notre développement en présentant les premières preuves formelles (et donc certifications) de certains résultats comme l'impossibilité de la convergence de robots amnésiques lorsqu'un tiers d'entre eux sont byzantins, ou encore l'impossibilité du rassemblement pour un nombre pair de robots évoluant dans R.

Thomas Cauwbergs, KU-Leuven. 2:00:00 8 janvier 2015 15:30 geo
Splicing and zeta functions
Abstract

Némethi and Veys proved a generalized monodromy conjecture using the technique of splicing. They considered a topological zeta function with respect to a differential form and included this information into the splice diagram. This splice diagram is essentially a decorated dual graph of an embedded resolution and splicing is operation on these splice diagrams. It splits such a graph into two parts and their topological zeta functions are related by a splicing formula. An interesting question is then what happens if we look at more general zeta functions such as the motivic zeta function and the monodromic motivic zeta functions. I will illustrate these (splice) diagrams using easy examples and give another proof of the splicing formula. The advantage of this proof is that it also is valid for these other zeta functions. However I will also discuss some problems arising from considering these other zeta functions.

Emmanuel Bultot, KU-Leuven. 2:00:00 8 janvier 2015 14:00 geo
Calcul de fonctions zêta à partir de modèles log lisses
Abstract

La fonction zêta Z_f(T) d'un polynôme complexe f est une fonction génératrice qui encode certaines propriétés arithmétiques de f. Elle est principalement étudiée pour son rôle central dans la conjecture de monodromie, qui prédit un lien précis entre ses pôles et des propriétés topologiques de f. Une formule classique permet de déterminer un ensemble de candidats pôles à partir d'une résolution des singularités de lieu d'annulation de f, mais cet ensemble introduit malheureusement beaucoup de faux pôles. Nous montrons comment le concept de log lissité, issu de la géométrie logarithmique, permet de travailler sur des résolutions des singularités partielles et ainsi d'obtenir un ensemble réduit de candidats pôles pour Z_f(T). Ce résultat ouvre des perspectives quant à la résolution de la conjecture de monodromie.

Francesco Fanelli, Ecole Normale Supérieure de Pise, Italie. 2:00:00 19 décembre 2014 14:00 edp
A singular limit problem for viscous compressible fluids in presence of capillarity
Abstract

In the present talk we are interested in a singular limit problem for a compressible Navier-Stokes-Korteweg system under the action of high rotation of the Earth. We study the incompressible and high rotation limits simultaneously. Moreover, we consider both the constant capillarity and the vanishing capillarity regimes. We will find that the limit velocity field is divergence-free. Moreover, we will completely characterize the equation satisfied by the limit density, which can be interpreted as a sort of stream-function for the limit velocity field. The results are based on suitable applications of the RAGE theorem.

François Laudendbach, Laboratoire Jean LERAY, Université de Nantes. 2:00:00 18 décembre 2014 14:00 geo
Aissa Guesmia, Institut Elie Cartan de Lorraine, UMR 7502, Université de Lorraine, Metz. 2:00:00 12 décembre 2014 14:00 edp
Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay
Abstract

In this work, we consider a class of second order abstract linear hyperbolic equations with infinite memory and distributed time delay. Under appropriate assumptions on the infinite memory and distributed time delay convolution kernels, we prove well-posedness and stability of the system. Our estimation shows that the dissipation resulting from the infinite memory alone guarantees the asymptotic stability of the system in spite of the presence of distributed time delay. The decay rate of solutions is found explicitly in terms of the growth at infinity of the infinite memory and the distributed time delay convolution kernels. An application of our approach to the discrete time delay case is also given. This is a joint work with Prof. Nasser-eddine Tatar, Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals (KFUPM), Saudi Arabia.

Pierre-Jean Spaenlehauer, Inria Nancy Grand-Est. 2:00:00 12 décembre 2014 10:00 geo
Sparse Gröbner Bases: the Unmixed Case
Abstract

Sparse elimination theory is a framework developed during the last decades to exploit monomial structures in systems of Laurent polynomials by computing in semigroup algebras. We present an analog of Gröbner bases for semigroup algebras, and we propose variants of the algorithms F5 and FGLM to compute them. These objects provide algorithmic tools to compute efficiently the solutions of sparse systems of equations when all the polynomials share the same monomial support (unmixed case). When these monomials correspond to the points with integer coordinates in a normal lattice polytope and under regularity assumptions, we prove complexity bounds which depend on the combinatorial properties of this polytope. Our prototype ``proof-of-concept'' implementation shows large speed-ups (more than 100 for some examples) compared to classical Gröbner bases software. Joint work with Jean-Charles Faugère and Jules Svartz.

Emmanuel Peyre, Université Joseph Fourier, Institut Fourier. 2:00:00 11 décembre 2014 14:00 geo
Où sont les points rationnels ?
Abstract

Sur une variété algébrique définie sur les rationnels et dont les points rationnels sont denses pour la topologie de Zariski, il est naturel de mesurer la complexité des solutions à l'aide d'une hauteur et de regarder la distribution asymptotique des points de hauteurs bornée sur la variété. Des travaux initiés par Manin il y a une vingtaine d'années permettent de lier cette distribution à la géométrie de la variété. Le but de l'exposé est de présenter divers exemples illustrant les phénomènes rencontrés et les interprétations qu'on peut espérer en tirer.

Cyril Imbert, Laboratoire d'Analyse et de Mathématiques Appliquées, Université Paris Est Créteil. 2:00:00 5 décembre 2014 14:00 edp
Equations des milieux poreux fractionnaires
Abstract

Un certain nombre d'applications suggère de considérer une équation des milieux poreux associée à une loi de pression non-locale et non-linéaire. Ainsi un certain nombre de variante non-locale de la très classique équation des milieux poreux ont récemment été introduites et étudiées. Pour l'une de ces variantes, j'expliquerai comment construire une solution, et ce pour une large classe de données initiales, puis comment construire des solutions auto-similaires et enfin comment montrer la vitesse de propagation finie du support de la donnée initiale. Ceci est un travail en collaboration avec Piotr Biler et Grzegorz Karch.

Tamara Servi, Università di Pisa. 2:00:00 4 décembre 2014 14:00 geo
Un théorème de Puiseux en plusieurs variables pour les séries généralisées convergentes
Abstract

Le théorème de Puiseux classique dit que les solutions y=g(x) d'une équation analytique réelle f(x,y)=0 au voisinage de l'origine, sont des séries de Puiseux convergentes. Le but de mon exposé sera d'étendre ce résultat, et ses versions en plusieurs variables, à la classe des séries généralisées convergentes. Une série généralisée (en plusieurs variables) est une série de puissances à exposants réels positifs dont le support est contenu dans un produit cartésien de sous-ensembles bien ordonnés de la droite réelle. Soit A la collection de toutes les séries généralisées convergentes. Je vais montrer que si f(x_1,...,x_n,y) est dans A, alors les solutions y=g(x_1,...,x_n) de l'équation f=0 peuvent être exprimées par morceaux comme des compositions finies de quotients de fonctions de A. Ce résultat s'étend à des classes de fonctions définissables dans des expansions o-minimales polynomialement bornées du corps réel, telles les classes quasianalytiques de Denjoy-Carleman, les séries Gevrey multi-sommables et une classe qui contient certaines applications de transition de Dulac associées à des champs de vecteurs analytiques du plan.

TBA, TBA. 2:00:00 4 décembre 2014 10:30 limd
Miguel Rodrigues, Institut Camille Jordan, Université Claude Bernard Lyon 1. 2:00:00 28 novembre 2014 14:00 edp
Stabilité asymptotique et modulation des ondes périodiques de certains systèmes paraboliques ou hamiltoniens
Abstract

Récemment, nos connaissances sur la stabilité des ondes progressives périodiques ont connu une croissance rapide, principalement motivée par des applications à l'étude de certaines ondes de surface. Nous essaierons de passer en revue la théorie essentiellement complète disponible pour les systèmes paraboliques, et qui inclut la description de St Venant de la dynamique proche des rouleaux visqueux, et discuterons l'évolution linéarisée autour des ondes cnoidales de Korteweg--de Vries, qui modèlent en particulier les ondes de surface longues et de petite amplitude.

Mickaël Matusinski, Institut de Mathématiques de Bordeaux. 2:00:00 27 novembre 2014 14:00 geo
Sur l'algébricité des séries de Puiseux
Abstract

Travail en commun et en cours avec M. Hickel. Nous essayons de comprendre ce qui distingue une série de Puiseux algébrique (sur K(x) le corps des fonctions rationnelles à 1 variable en caractéristique nulle) d'une série de Puiseux formelle. Plus précisément, nous nous intéressons - et répondons en partie - aux questions suivantes : - étant donnée une équation polynomiale P(x,y)=0, quelle expression pour les coefficients d'une série de Puiseux y(x) solution en fonction des coefficients de l'équation ? - étant donnée une série de Puiseux algébrique, peut-on reconstruire un polynôme annulateur, éventuellement minimal ? comment ? Il existe une littérature variée sur ce thème, que j'essaierai de rapporter, avant d'aborder nos contributions.

JERAA, Rhône Alpes. 2:00:00 21 novembre 2014 14:00 edp
JERAA
Abstract
Antonio Lerario, Institut Camille Jordan, Lyon. 2:00:00 20 novembre 2014 14:00 geo
Complexity of intersection of real quadrics and the topology of discriminant varieties
Abstract

In this talk I will focus on the problem of understanding the topology of an intersection X of real quadrics. I will introduce a new notion of geometric complexity (inspired to fewnomials and related), using the discriminant in the space of quadratic forms. I will discuss a sort of duality'' between X and the set of singular quadrics in the linear system defining it; in the case of intersections of three quadrics this picture offers adual'' point of view on Hilbert's Sixteenth Problem.

Louis Cuel, LAMA. 2:00:00 20 novembre 2014 10:00 limd
Voronoi-based Geometric Inference
Abstract

Ces travaux s'inscrivent dans la thématique de l'inférence géométrique dont le but est de répondre au problème suivant : étant donné un objet géométrique dont on ne connaît qu'une approximation, peut-on estimer de manière robuste ses propriétés? On se place dans le cas où l'approximation est un nuage de points ou un ensemble digital dans un espace euclidien de dimension finie. On montre un résultat de convergence multigrille d'un estimateur du Voronoi Covariance Measure qui utilise des matrices de covariance de cellules de Voronoi. Ce résultat, comme la plupart des résultats en inférence géométrique, utilisent la stabilité de la fonction distance à un compact. Cependant, la présence d'un seul point aberrant suffit pour que les hypothèses des résultats de stabilité ne soient pas satisfaites. La distance à une mesure est une fonction distance généralisée introduite récemment qui est robuste aux points aberrants. Dans ce travail, on généralise le Voronoi Covariance Measure à des fonctions distances généralisées et on montre que cet estimateur appliqué à la distance à une mesure est robuste aux points aberrants. On en déduit en particulier un estimateur de normale très robuste. On présente également des résultats expérimentaux qui montrent une forte robustesse des estimations de normales, courbures, directions de courbure et arêtes vives. Ces résultats sont comparés favorablement à l'état de l'art.

Luca Rossi - Matteo Novaga - Vitaly Volpert - Romain Joly - Emer, Université de Padou Italie - Université de Pise Italie - UMPA Lyon - UJF Grenoble - UMPA Lyon. 2:00:00 14 novembre 2014 14:00 edp
TBA, TBA. 2:00:00 13 novembre 2014 10:30 limd
Denis Serre, UMPA, ENS LYON. 2:00:00 7 novembre 2014 14:00 edp