Une classe effective dans une variété symplectique de dimension quatre est une classe d'homologie de degré deux qui est réalisée par une courbe J-holomorphe (éventuellement réductible) pour toute structure presque complexe positive sur la forme symplectique. Je montrerai que les classes effectives sont orthogonales aux tores lagrangiens pour la forme d'intersection.
Soit W -> X une variété projective non singulière réelle de dimension 3 fibrée en courbes rationnelles. On suppose que W(R) est orientable. Soit M une composante connexe de W(R). D'après Kollár, M est alors essentiellement une variété de Seifert ou une somme connexe d'espaces lenticulaires. Soit n un entier définit de la façon suivante : Si g : M -> F est une fibration de Seifert, on note n le nombre de fibres multiples de g. Si M est une somme connexe d'espaces lenticulaires, on note n le nombre d'espaces lenticulaires.
Théorème
Lorsque X est une surface géometriquement rationnelle, n est majoré par 4.
Ce résultat répond par l'affirmative à une question de Kollár qui avait montré en 1999 que n était majoré par 6. On déduit ce théorème d'une analyse fine de certaines surface de Del Pezzo singulières avec singularités Du Val.
Un polytope convexe d'un espace euclidien est régulier si son groupe d'isométries agit transitivement sur l'ensemble de ses drapeaux. Depuis Schläfli (1901), on sait classifier ces polytopes réguliers. Si on suppose que le polytope est à sommets entiers, ou plus généralement sur un réseau, on peut définir les polytopes réguliers relativement au groupe préservant ce réseau (les polytopes Z-réguliers). Récemment Karpenkov a donné une classification de ces polytopes Z-réguliers utilisant la classification de Schläfli. Dans un travail en commun avec Pierre-Louis Montagard, nous retrouvons ce résultat en associant à chaque polytope Z-régulier un système de racines.
Nous allons discuter le problème de comptage des cycles limites pour l'équation de Liénard classique x' = y - P(x) , y' = -x , où P(x) est un polynôme en x. Une compactification convenable de l'espace de tous les systèmes de Liénard nous amène à considérer l'équation du titre.
Considérons une variété M, définissable dans une structure o- minimale A, et munie d'un champ d'hyperplans H, intégrable et définissable dans A. Nous montrons qu'il existe un recouvrement fini de M par des ouverts définissables dans A sur chacuns desquels H induit un feuilletage en hypersurfaces séparantes.
On montre que les ensembles extrémaux du gradient d'une fonction générique lisse sont lisses en dehors des points critiques de la fonction. Aux points critiques, les branches lisses des ensembles extrémaux sont tangents aux espaces propres du hessien. De plus, la fonction est de Morse sur son ensemble extrémal.
On verra comment la positivité de certains opérateurs sur une surface riemannienne permet d'obtenir des informations sur le type conforme de la surface. Ce type de résultat trouve son origine dans l'étude des surfaces minimales stables.
Travail en commun avec D. Cohen-Steiner (INRIA Sophia-Antipolis) et A. Lieutier (Dassault Systèmes). Dans cet exposé, nous aborderons la question de la ``stabilité de la topologie'' des sous-ensembles compacts de R^n par perturbation pour la distance de Hausdorff : étant donné deux compacts K et K' dont la distance de Hausdorff est petite, peut-on déduire la topologie de K de celle de K'? En toute généralité, la réponse à cette question est évidemment négative. Cependant, nous verrons que si K appartient a une large classe de compacts (contenant les sous-analytiques), on peut apporter une réponse positive à la question précédente. L'approche adoptée est basée sur quelques propriétés de la fonction distance a un compact que nous rappelerons.
Nous aborderons les récents développements en géométrie énumérative réelle. Combien de courbes algébriques de genre 0 passent par une collection quelconque de points dans le plan P2 ? Une approche actuelle consiste à construire des espaces de modules spécifiques et répondre à cette question par un calcul (co)homologique suivant Kontsevich (en complexe) puis Welschinger (en réel). Dans le cadre réel il est nécessaire de prendre en compte l'orientation de ces espaces et c'est ce point qui sera traité dans la détermination de certaines classes caractéristiques.
Cet exposé est une petite introduction au livre de Jean-Marie Souriau intitulé << Structure des systèmes dynamiques >> (Dunod, 1970) dans lequel l'auteur propose un nouveau cadre pour traiter de la mécanique lagrangienne, cadre malheureusement trop peu connu, même de nos jours... Cette approche a l'avantage de dépasser les divers formalismes classiquement utilisés en mécanique analytique : espace des configurations, espace des phases, équations d'Euler-Lagrange ou équations de Hamilton. En outre, alors que ces derniers points de vue ne permettent même pas de rendre compte du simple principe de relativité galiléenne et sont donc insatisfaisants, l'approche développée par Jean-Marie Souriau montre comment la géométrie symplectique est à l'oeuvre de façon unificatrice dans des branches aussi variées de la physique telles que la mécanique classique, la mécanique statistique ou encore la mécanique quantique.
On considérera la distance associée à la norme de Bombieri sur l'ensemble des polynômes homogènes réels de degré d à n variables. On montrera que si le niveau P=0 est lisse et extremal (on ne peut pas ajouter de composante à P=0 sans changer le degré) alors la distance au discriminant réel (l'ensemble des polynomes Q réels avec au moins une singularité réelle) est min{ |P(x)| ; x dans S^{n-1}, x point critique de P} On en déduira une inégalité entre la taille des composantes connexes de P=0 et la distance au discriminant.
Le nombre de courbes algébriques complexes nonsingulières de degré d passant par d(d+3)/2 - t points et tangentes à t droites est (2(d-1))^t (si la configuration est générique et t<2d-1). F. Ronga a montré que pour une droite (t=1) le problème réel correspondant était maximal: il existe une configuration générique de points réels et d'une droite réelle telle que 2(d-1) courbes de degré d passent par les points et sont tangentes a la droite. En utilisant la géométrie tropicale on montre la maximalité de ce problème énumératif réel pour deux droites (t=2).
Dans $R^n$, avec une distribution algébrique donnée, on définit le gradient horizontal d'un polynôme, la projection du gradient de ce polynôme sur la distribution. On va donner (si le temps le permet) - quelques propriétés de base du gradient horizontal, - des exemples montrant que + longueur de trajectoires de gradient horizontal n'est pas forcément bornée, + des trajectoires de gradient horizontal peuvent avoir de cycles limites, - sous certaines conditions de généricité, par un changement de métrique, on peut montrer que longueur de trajectoires de gradient horizontal est bornée et que les trajectoires possèdent de limites.
L'exposé comprendra trois parties : 1) Presentation du résultat de Mikhalkin (``Real Algebaric Curves, the Moment map and Amoebas'', Ann. of Math. (2) 151 (2000)) 2) Petit état de l'Art sur les déformations (lissifications) de germes de courbes planes réelles. 3) Déformations de Harnack : définition, existence, unicité du type topologique (travail en commun avec Pedro Gonzaléz Pérez) ; quelques considérations métriques (volume de l'Amibe, taille des ovales..)
On sait bien qu'un polynome en une variable du type x^d+c avec c réel non nul possède au plus deux racines réelles non nulles alors qu'il possède d racines complexes. Plus généralement, la règle de Descartes implique qu' un polynome réel en une variable avec m+1 monomes distincts possède au plus 2m racines réelles non nulles. En particulier, si le degré d'un tel polynome est grand (par rapport à son nombre de monomes), seulement peu de ses racines complexes sont en fait réelles. En 1980 Askold Khovansky a montré qu'un tel phénomène n'était pas propre aux polynomes en une variable. Il a proposé une borne sur le nombre de solutions réelles (à coordonnées non nulles) d'un système de n équations polynomiales en n variables qui ne dépend que du nombre total de monomes distincts du système. Néanmoins, cette borne parait extremement large. Par exemple, lorsque le système est un système formé de 2 polynomes en 2 variables et avec au plus 5 monomes au total, le borne de Khovansky est 5184. Dans cette exposé, on présentera de nouvelles bornes fewnomiales obtenues très récemment avec Frank Sottile. Ces bornes améliorent considérablement celles de Khovansky. Dans notre exemple précédent, la nouvelle borne est 15. La preuve de ces nouvelles bornes est différente de celle de Khovansky (basée sur une induction sur le nombre de monomes). On se ramène à un autre système (système de Gale) en utilisant une base pour l'ensemble des relations sur les exposants du système initial. Puis, on majore le nombre de solutions réelles du nouveau système en utilisant un peu de géométrie différentielle, de la géométrie torique et de la combinatoire de polytopes.
Nous montrons qu'il existe un ensemble de Canotor $Csubset [0,1]$ tel que pour toute application semi-algébrique bornée $f:Uto R^k, ou $Usubset R^n$, l'image $f(Ucap C^n$ est de dimension entropique nulle. Donc en particulier $f(Ucap C^n$ est nulle part dense dans $R^k$, ceci donne la réponse positive à une question de C. Miller motivée par des extensions récentes (structures d-minimales) de la théorie de structures o-minimales. L'argument est basé sur la structure conique '' aiguë '' de $C^n$ et sur une inégalité du type de Lojasiewicz, qui permet de contrôler la norme de la différentielle de $f$ par l'inverse de la distance au bord.