Cet exposé supposera connues les définitions de base expliquées lors de l'exposé de la veille. J'expliquerai comment le théorème de réduction semi-stable (dont je rappellerai l'énoncé en détail) permet de décrire la topologie locale et globale des courbes de Berkovich, et notamment de relier leur type d'homotopie à leur réduction modulo p ; je dirai quelques mots sur la façon dont on peut procéder en sens contraire, c'est-à-dire déduire le théorème de réduction semi-stable d'une étude directe des courbes de Berkovich. Je passerai ensuite à la topologie des espaces de Berkovich associés à des variétés algébriques de dimension quelconque et à celle de leurs sous-ensembles semi-algébriques, que je définirai. Je présenterai les différents résultats qui ont été établis à ce jour à leur sujet (type d'homotopie, modération topologique...), depuis les articles de Berkovich dans les années 90, fondés sur des techniques très profondes de géométrie arithmétique (altérations de de Jong), jusqu'aux travaux très récents de Hrushovski et Loeser, qui reposent sur des outils avancés de théorie des modèles des corps valués.
Je commencerai par présenter, pour un nombre premier p fixé, le corps des nombres p-adiques, qui joue un rôle majeur en arithmétique. Il est muni d'une distance naturelle pour laquelle il est complet, mais totalement discontinu. Faire de la géométrie (algébrique ou analytique) intéressante sur ce type de corps est donc délicat, mais tout de même possible. Plusieurs stratégies existent pour contourner la totale discontinuité ; je présenterai celle de Berkovich, qui consiste à «rajouter beaucoup de points» aux espaces «naïfs» de départ de façon à les rendre connexes par arcs. J'illustrerai les constructions et définitions par des exemples simples, et montrerai une ou deux applications ce ce point de vue, par exemple aux systèmes dynamiques.
Le size-change termination principle'' est un test (correct mais forcément incomplet) pour décider la terminaison de programmes mutuellement récursifs. Ce test, dû à A. ben Amram, N.D. Jones et C.S. Lee est particulièrement simple et élégant, tout en étant relativement puissant et modulaire. Il s'agit essentiellement d'une opération de clôture transitive sur le graphe d'appels des fonctions et la preuve de correction repose sur le théorème de Ramsey infini. Quand le langage des définitions récursives est un langage avec constructeurs / destructeurs à la ML, il y a une notion naturelle de taille : le nombre de constructeurs dans une valeur. Dans ce contexte, on peut généraliser le test pour conserver plus d'information que la seule taille des arguments. Ceci permet notamment d'ignorer certains chemins du graphe d'appels qui ne correspondent à aucune suite concrète d'appels. Par contre, la preuve de correction du nouveau principe est plus complexe que l'originale. Après une rapide présentation du test original, je décrirais cette extension et donnerai certaines idées de la preuve de correction. Comme le test est implanté (en Caml) pour le langage PML, je donnerais également des exemples (et
contre exemples'') pour permettre de se faire une idée des définitions acceptées (et refusées).
Nous définissons d'une manière intrinsèque pour le système des équations de Navier-Stokes compressibles une classe spécifique des solutions faibles re-normalisées et convenables. Ces solutions vérifient en plus de l'équation de continuité et de l'équation du mouvement une inégalité d'entropie introduite par plusieurs auteurs. Nous démontrons l'existence de ces solutions puis étudions quelques propriétés, en particulier l'unicité forte-faible.
In 2004, it is proved that the cut locus of a general point on two dimensional ellipsoid is a a segment of a curvature line and proved Jacobi's last geometric statement on the singularities of the conjugate locus. We will show the cut loci of a general point on higher dimensional ellipsoids are closed disks of codimension one and determine the singularities of the conjugate loci. Moreover we will discuss other related topics.
Chemotaxis is the directed motion towards a chemical attractant. Many bacteria chemotax by swimming repeatedly in a randomly chosen direction and biasing their swim lengths according to whether their environment is improving in the current direction. At a macroscopic level this biased random walk has been modeled by the Keller-Segel (K-S) equations which are conservation laws that have a bacterial flux with a component proportional to the gradient of attractant concentration. The K-S equations predict that bacteria will aggregate at the maxima of the attractant concentration, but this is not always observed. For rapidly spatially-varying concentration gradients, the peak in bacterial concentration is some distance away, lying on a ring in two-dimensions. This is the ”volcano effect”. Our work, starting from a simplified biochemical description of each bacterium and then extracting population level models, shows how to bridge these two regimes (K-S and volcanic). The results are verified against stochastic simulations of virtual bacteria. We shall also discuss applications to the more complex chemotactic process where the bacteria are themselves producing the chemoattractant.
Je présenterai un modèle localisé de la logique linéaire multiplicative basé sur des graphes à partir duquel il est possible d'obtenir une catégorie *-autonome ainsi que de définir une notion de vérité. Je montrerai également qu'une restriction de ce modèle à une certaine classe de graphes se plonge dans la géométrie de l'interaction hyperfinie de Girard. Ceci permet d'appréhender de manière purement combinatoire le cadre utilisant des éléments d'analyse fonctionnelle avancés introduit par Girard. J'expliquerai enfin comment adapter ce modèle pour l'étendre à la logique linéaire multiplicative-additive, et discuterai d'une extension aux exponentielles.
TBA
Dans cette présentation, on s'intéressera aux propriétés qualitatives des solutions régulières de l'équation des ondes semilineaire H^1-critique. Il est connu, notamment depuis les résultats obtenus par C. Kenig et F. Merle [Acta Mathematica, 2008], que la famille des minimiseurs de l'injection de H^1 dans L^{2^*} joue un role particulier dans la caractérisation des données initiales dont les solutions fortes associées explosent en temps fini. Je présenterai un résultat obtenu en collaboration avec P. Raphael sur le comportement des solutions de l'équation des ondes H^1-critique au voisinage de ces minimiseurs en dimension 4.
J'expliquerai de façon élémentaire comment on peut établir des liens entre plusieurs points de vue (les points de vue différentiel, algébro-géométrique, métrique) sur l'étude des singularités, dans le contexte souple de la géométrie des ensembles définissables. Nous définirons d'abord ces notions et nous dirons ensuite en quoi et comment elles se correspondent.
Cet exposé est consacré à une théorie de l'homotopie des infini-catégories strictes. Cette théorie est présentée par une structure de modèles de Quillen, construite à partir d'un ensemble de cofibrations génératrices et d'une classe d'équivalences faibles. Je commencerai par des généralites sur l'algèbre homotopique pour ensuite préciser la construction de la structure de modèles en question. Finalement j'esquisserai une construction de cohomologie non-abelienne où les inifini-categories strictes servent de coefficients.
Dans un espace métrique compact (X,d), l’ensemble A(x) des antipodes du point x est l’ensemble des maxima globaux de la fonction qui à un point y associe d(x,y). Si (X,d) est le plan projectif réel à courbure constante, alors pour tout x, A(x) est une courbe fermée. L’objet de cet exposé sera de montrer la réciproque : si sur une surface riemannienne lisse chaque point (diamétral) a un ensemble d’antipodes sans extrémités (par exemple une courbe fermée), alors il s’agit du plan projectif réel à courbure constante.
After a brief introduction of the concepts of Distributional Jacobians, we will define a Mumford-Shah energy for vector valued maps that generalizes the classical one. We will then introduce a family of approximating energy and prove a Gamma-convergence result, in the spirit of the previous works by Ambrosio and Tortorelli.
Cet exposé est consacré à la modélisation mathématique de quelques problèmes environnementaux, couvre des thématiques allant des vagues jusqu'aux avalanches de neige poudreuse et traite de différents aspects de la modélisation des tsunamis. Nous étudions toute la gamme des processus physiques de la génération, transformations d'énergie, propagation jusqu'à l'inondation des côtes. Nous verrons aussi différents aspects de la simulation numérique et de la modélisation d'inondation. Ces questions sont traitées par différentes approches: les équations de Saint-Venant, les équations de type de Boussinesq et le système de Navier-Stokes bi-fluide. Nous nous intéressons aussi à deux problèmes relevant principalement des écoulements multi-fluides, en particulier la justification formelle du modèle bifluide à quatre équations proposé avant pour la modélisation des écoulements aérés. Quelques résultats numériques présentés peuvent s'appliquer, par exemple, à la simulation numérique du déferlement. Nous proposons aussi un nouveau modèle pour les avalanches de neige poudreuse. Ce système est dérivé du Navier-Stokes bifluide classique et possède de bonnes propriétés qualitatives. Les simulations numériques d'interaction d'une avalanche avec obstacle sont présentées.
Les fonctions définissables des structures o-minimales polynomialement bornées satisfont une forme particulière de théorème de préparation. Nous montrons comment, si ces structures sont engendrées par des algèbres quasi-analytiques, rendre explicite ce résultat et en déduire une propriété d'élimination à la Tarski-Seidenberg.