Une classe effective dans une variété symplectique de dimension quatre est une classe d'homologie de degré deux qui est réalisée par une courbe J-holomorphe (éventuellement réductible) pour toute structure presque complexe positive sur la forme symplectique. Je montrerai que les classes effectives sont orthogonales aux tores lagrangiens pour la forme d'intersection.
Nous montrerons comment un langage similaire à ML, peut être transformé de manière très simple et minimaliste en un système de déduction où les preuves sont des programmes.
On considère l'équation de Boltzmann pour un gaz à deux composantes lorque le nombre de Knudsen devient petit. Une des 2 composantes satisfait à des conditions de bord de type données aux bords rentrantes et l'autre composante satisfait à des conditions de bord de type Maxwell diffuses. La solution du problème est alors rechechée sous la forme d'un développement asymptotique de type Hilbert avec un reste contrôlé.
Soit W -> X une variété projective non singulière réelle de dimension 3 fibrée en courbes rationnelles. On suppose que W(R) est orientable. Soit M une composante connexe de W(R). D'après Kollár, M est alors essentiellement une variété de Seifert ou une somme connexe d'espaces lenticulaires. Soit n un entier définit de la façon suivante : Si g : M -> F est une fibration de Seifert, on note n le nombre de fibres multiples de g. Si M est une somme connexe d'espaces lenticulaires, on note n le nombre d'espaces lenticulaires.
Théorème
Lorsque X est une surface géometriquement rationnelle, n est majoré par 4.
Ce résultat répond par l'affirmative à une question de Kollár qui avait montré en 1999 que n était majoré par 6. On déduit ce théorème d'une analyse fine de certaines surface de Del Pezzo singulières avec singularités Du Val.
Considérez la suite (ordonnée) de fractions suivante: 17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/2 1/7 55/1. Partez de l'entier 2 et à chaque étape multipliez l'entier courant par la première fraction pour laquelle le produit est entier et répétez le processus. Les puissances de 2 que vous obtenez sont exactement les 2^p où p est premier. C'est un simple exemple de programme d'un langage de programmation universel: FRACTRAN. Après avoir expliqué en quoi FRACTRAN est une présentation originale et concise de modèles de calculs bien connus, nous montrerons deux résultats d'indécidabilité sur les problèmes de Collatz généralisés qui sont des corollaires faciles de l'universalité de FRACTRAN. Tout ces résultats sont tirés d'un article de Conway de 86.
On connaît les homomorphismes de monoïdes, de groupes, mais qu'est-ce qu'un homomorphisme de logiques ? Pour répondre à cette question, nous avons introduit avec Christian Lair en 2002 la notion de "propagateur", qui est définie de façon très simple à partir des "esquisses" de Charles Ehresmann. Le but de l'exposé est de présenter les esquisses et les propagateurs, et de montrer comment un propagateur définit une "logique", avec des modèles et un système de preuves, apparentée aux "doctrines" de William Lawvere. La définition des homomorphismes de logiques est alors évidente. Je parlerai aussi d'une application à la sémantique des effets de bord dans les langages de programmation, qui constitue ma motivation initiale pour ces travaux. Les quelques notions de théorie des catégories nécessaires à la compréhension de tout cela seront rappelées dans l'exposé.
Un polytope convexe d'un espace euclidien est régulier si son groupe d'isométries agit transitivement sur l'ensemble de ses drapeaux. Depuis Schläfli (1901), on sait classifier ces polytopes réguliers. Si on suppose que le polytope est à sommets entiers, ou plus généralement sur un réseau, on peut définir les polytopes réguliers relativement au groupe préservant ce réseau (les polytopes Z-réguliers). Récemment Karpenkov a donné une classification de ces polytopes Z-réguliers utilisant la classification de Schläfli. Dans un travail en commun avec Pierre-Louis Montagard, nous retrouvons ce résultat en associant à chaque polytope Z-régulier un système de racines.
In this talk, I will present an intersection type system for Curien Herbelin symmetric lambda calculus, that has been developed in the joint work with Dan Dougherty and Pierre Lescanne. The system completely characterizes strong normalization of the free (unrestricted) reduction. The proof uses a technique based on fixed points. The system enjoys subject reduction and subject expansion.
Http://www.cmap.polytechnique.fr/ mechkour/
Nous allons discuter le problème de comptage des cycles limites pour l'équation de Liénard classique x' = y - P(x) , y' = -x , où P(x) est un polynôme en x. Une compactification convenable de l'espace de tous les systèmes de Liénard nous amène à considérer l'équation du titre.
Je présenterai d'abord un développement formel à propos des fondements de la géométrie. Celui-ci consiste en la formalisation des huit premiers chapitres du livre de Schwabäuser, Szmielew et Tarski: Metamathematische Methoden in der Geometrie. Ensuite, je décrirai l'implantation en Coq d'une procédure de décision pour la géométrie affine plane: la méthode des aires de Chou, Gao et Zhang. Dans la troisième partie, nous nous intéresserons à la conception d'une interface graphique pour la preuve formelle en géométrie : Geoproof (http://home.gna.org/geoproof/). GeoProof combine un logiciel de géométrie dynamique avec l'assistant de preuve Coq. Enfin, je presenterai un système formel diagrammatique qui permet de formaliser des raisonnements dans le domaine de la réécriture abstraite. Il est par exemple possible de formaliser dans ce système la preuve diagrammatique du lemme de Newman. La correction et la complétude du système sont prouvées vis-à-vis d'une classe de formules appelée logique cohérente.
Nous savons maintenant qu'il existe dans la nature des modèles de la logique classique qui sont aux catégories ce que les algèbres de Boole sont aux ensembles ordonnés. Durant des années on a cru que de tels êtres ne pouvaient exister, étant donné le célèbre 171 paradoxe de Joyal 187 : une catégorie cartésienne fermée ne peut être équipée d'une négation symétrique. Les premiers exemples étaient des catégories de réseaux de démonstrations. Nous avons ensuite construit des sémantiques dénotationnelles pour la logique classique qui ressemblent beaucoup aux espaces cohérents. L'exposé se concentrera sur les propriétés essentielles que tous ces modèles possèdent, en d'autres termes sur les raisons pour quoi ça marche. Ces modèles nous mènent à nous poser des questions sur l'universalité de l'isomorphisme de Curry-Howard : il existe des façons de dénoter des preuves en logique classique pour lesquelles le processus de normalisation ne correspond pas au calcul en programmation fonctionnelle. Les connaissances en théorie des catégories que nous supposons de la part de l'autitoire sont absolument minimales : les définitions de catégorie, foncteur et transformation naturelle.