Séminaire de l'équipe
Équations aux Dérivées Partielles : Études Déterministes et Probabilistes


Organisatrice: Maria Kazakova.

Salle zoom: https://cnrs.zoom.us/j/95713686741?pwd=VUxZWGJIbXhiZUF1VTdIZXIza050QT09.

Lien ical.

Xiangdi Huang, University of Science and Technology of China, Hefei, AnHui Province, China. 2:00:00 12 novembre 2010 15:00 edp
A Multi-Fluid Compressible System as the Limit of Weak-Solutions of the Isentropic Compressible Navier-Stokes Equations
Abstract

This talk mainly concerns the mathematical justification of a viscous compressible multi-fluid model linked to the Baer-Nunziato model used by engineers, see for instance [M., Eyrolles (1975)]. More precisely, we show that some built approximate finite-energy weak solutions of the isentropic compressible Navier-Stokes equations converge, on a short time interval, to the strong solution of this viscous compressible multi-fluid model provided the initial density sequence is uniformly bounded with a corrresponding Young measure which is a linear convex combination of m Dirac measures.

Li Mingjie, Institute of Applied Mathematics Academy of Mathematics and System Sciences Chinese Academy of Sciences, Beijing, China. 2:00:00 12 novembre 2010 14:00 edp
Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations
Abstract

It is well-known that one-dimensional isentropic gas dynamics has two elementary waves, i.e., shock wave and rarefaction wave. Among the two waves, only the rarefaction wave can be connected with vacuum. Given a rarefaction wave with one-side vacuum state to the compressible Euler equations, we can construct a sequence of solutions to one-dimensional compressible isentropic Navier-Stokes equations which converge to the above rarefaction wave with vacuum as the viscosity tends to zero. Moreover, the uniform convergence rate is obtained. The proof consists of a scaling argument and elementary energy analysis, based on the underlying rarefaction wave structures.

Gabriel Peyré, CEREMADE, Université Paris-Dauphine. 2:00:00 24 septembre 2010 14:00 edp
Parcimonie, problèmes inverses et échantillonnage compressé
Abstract

Compressed sensing (CS) is a new strategy to sample complicated data such as audio signals or natural images. Instead of performing a pointwise evaluation using localized sensors, signals are projected on a small number of delocalized random vectors. This talk is intended to give an overview of this emerging technology. It will cover both theoritical guarantees and practical applications in image processing and numerical analysis. The initial theory of CS was jointly developed by Donoho [1] and Candès, Romberg and Tao [2]. It makes use of the sparsity of signals to minimize the number of random measurements. Natural images are for instance well approximated using a few number of wavelets, and this sparsity is at the heart of the non-linear reconstruction process. I will discuss the extend to which the current theory captures the practical success of CS. I will pay a particular attention to the worse case analysis of the recovery, and perform a non-asymptotic evaluation of the performances [3]. To obtain better recovery guarantees, I propose a probabilistic analysis of the recovery of the sparsity support of the signal, which leads to constants that are explicit and small [4]. CS ideas have the potential to revolutionize other fields beyond signal processing. In particular, the resolution of large scale problems in numerical analysis could beneficiate from random projections. This performs a dimensionality reduction while simplifying the structure of the problem if the projection is well designed. As a proof of concept, I will present a new compressive wave equation solver, that use projections on random Laplacian eigenvectors [5]. [1] D. Donoho, Compressed sensing, IEEE Trans. Info. Theory, vol. 52, no. 4, pp. 1289-1306, 2006. [2] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Info. Theory, vol. 52, no. 2, pp. 489-509, 2006. [3] C. Dossal, G. Peyré and J. Fadili, A Numerical Exploration of Compressed Sampling Recovery, Linear Algebra and its Applications, Vol. 432(7), p.1663-1679, 2010. [4] C. Dossal, M.L. Chabanol, G. Peyré and J. Fadili, Sparse Support Identi

Mehmet ERSOY, LAMA, Université de Savoie. 2:00:00 10 septembre 2010 14:00 edp
Eleuterio TORO, Laboratory of Applied Mathematics, Department of Civil and Environmental Engineering, University of Trento, ITALY. 2:00:00 9 septembre 2010 14:00 edp
ADER high-order schemes for evolutionary PDEs
Abstract

The ADER approach (Toro et al. 2001 and many others) allows the construction of non-linear one step fully discrete numerical schemes of arbitrary order of accuracy in space and time, for solving evolutionary partial differential equations. The ADER approach operates in the frameworks of finite volume and DG finite element methods and is applicable to multidimensional problems on unstructured meshes. The schemes have two basic ingredients: (a) a non-linear spatial reconstruction operator and (b) the solution of a generalized (or high-order) Riemann problem that links spatial data distribution and time evolution. After describing the main ideas of the methodology I will also show some applications involving hyperbolic and parabolic equations.

Timack Ngom, LAMA, Université de Savoie. 2:00:00 2 juillet 2010 14:00 edp
Thèse
Abstract
Xiangdi Huang, University of Science and Technology of China, Hefei, AnHui Province, China.. 2:00:00 4 juin 2010 14:00 edp
Serrin Type Criterion for the Three-Dimensional Compressible Flows with vaccum
Abstract

We extend the well-known Serrin's blowup criterion for the three-dimensional incompressible Navier-Stokes equations to the 3D compressible Navier-Stokes equations with vacuum. In other words, in addition to Serrin's condition on the velocity, the L^1(0,T;L^{infty}) norm of the divergence of the velocity is also needed to control the possible breakdown of strong (or smooth) solutions for the three-dimensional compressible Navier-Stokes equations. Moreover, under some additional constraint on the viscosity coefficients, either the L^1(0,T;L^{infty}) norm of the divergence of the velocity or the upper bound of the density will be enough to guarantee the global existence of classical (or strong) solutions.``

François Jouve, Jussieu. 2:00:00 28 mai 2010 14:00 edp
Optimisation de formes par la méthode des courbes de niveau, et applications à la simulation de l'endommagement
Abstract

Nous présentons les méthodes d'optimisation de structure par la méthode des courbes de niveaux (level set). Nous montrons ensuite comment le modèle de Francfort-Marigo pour l'endommagement peut se traiter numériquement de façon efficace par ce type de méthode dès lors que l'on a calculé la dérivé de forme pour un problème à deux matériaux.

Ilaria Fragala, Université de Pise. 2:00:00 23 avril 2010 14:00 edp
The optimal compliance problem in thinning domains
Abstract

We consider the variational problem which consists in minimizing the compliance of a prescribed amount of elastic material, placed into a given design region, and sumbitted to an exterior balanced load. We discuss the asymptotic analysis of this problem when the design region is either a cylinder of infinitesimal height (case of thin plates) or a cylinder of infinitesimal cross section (case of thin rods). The results are contained in some recent papers in collaboration with Guy Bouchitte' and Pierre Seppecher.

Michael Renardy, Department of Mathematics at Virginia Tech, Blacksburg, USA. 2:00:00 2 avril 2010 14:00 edp
Luigi Manca, Université de Toulon. 2:00:00 26 mars 2010 14:00 edp
Existence et unicité d'une mesure invariante pour les EDP stochastiques
Abstract

Dans le cas des EDP stochastique, les solutions sont définies sur un espace de dimension infinie et les techniques utilisées pour des équations stochastiques ordinaires - fonction de Lyapunov, hypoellipticité, compacité du semi groupe de transition etc.- ne peuvent pas être appliquées ou nécessitent d'être adaptées. Dans cet exposé j'illustrerai des méthodes utilisées pour l'étude des mesures invariantes pour les EDP stochastiques et leurs applications à des cas spécifiques: dynamique de populations, équation de Burgers, équations de Navier-Stokes etc.

Olivier Goubet, L.A.M.F.A. Université de Picardie Jules Verne. 2:00:00 19 mars 2010 14:00 edp
Manuel Luna-Laynez, Université de Séville. 2:00:00 4 mars 2010 11:30 edp
Some numerical results for control problems in the coefficients.
Abstract

We present some numerical methods to solve control problems in the coefficients where the cost functional may depend on the gradient of the state non linearly. The main difficulty comes from the fact that the relaxed functional cost is not explicitly known. We prove some convergence results just using an upper or a lower approximation of this relaxed functional.

Juan Casado-Díaz, Université de Séville. 2:00:00 4 mars 2010 10:30 edp
Control problems in the coefficients with a nonlinear cost in the gradient
Abstract

We consider a control problem in the coefficients for an elliptic linear equation where the cost functional is non-linear in the gradient of the function state. The control variables are the coefficients of the diffusion matrix. This type of problems arises in Optimal Design of Composite Materials. It is well known that they have not a solution in general. Here we use the homogenization method to obtain a relaxed formulation.

Céline LABART, Université Pierre et Marie Curie (Paris), laboratoire de Probabilités et Modèles Aléatoires. 2:00:00 29 janvier 2010 14:00 edp
JAMES Nicolas., Université de Clermont-Ferrand. 2:00:00 22 janvier 2010 14:00 edp
Méthodes multi-niveaux sur grilles décalées. Application à la simulation numérique d'écoulements autour d'obstacles
Abstract

La simulation numérique des écoulements turbulents est délicate. En effet, lorsque le pas d'espace du maillage est plus grand que l'échelle dissipative, le maillage ne permet pas la représentation des plus petites échelles de l'écoulement réel. L'énergie transférée depuis les grandes échelles vers les petites échelles, par l'action des termes d'interaction non linéaires, n'est pas dissipée correctement. On constate alors une augmentation anormale de l'énergie au niveau des échelles qui correspondent à la taille de la maille de calcul. En conséquence, la réalisation d'une simulation numérique directe (résolution de toutes les échelles physiques sans modélisation de la turbulence) pour des écoulements caractérisés par un nombre de Reynolds élevé est très coûteuse en ressources informatiques. Plusieurs méthodes ont été développées pour permettre la simulation numérique de tels écoulements. La méthode multi-niveaux que nous proposons consiste à appliquer un traitement spécifique à chaque échelle, en considérant les propriétés physiques de l'écoulement. La décomposition des échelles du champ de vitesse est utilisée pour imposer une décroissance correcte du spectre d'énergie. La dynamique des grandes échelles est améliorée par le contrôle de l'accumulation de l'énergie sur les modes élevés.

Emmanuel Russ, Université Aix Marseille III. 2:00:00 8 janvier 2010 14:00 edp
Opérateur divergence et inégalités de Poincaré dans un domaine arbitraire
Abstract

On donne une condition géométrique nécessaire et suffisante sur un domaine borné arbitraire pour que l'opérateur divergence possède un inverse à droite continu dans des espaces de Lebesgue et de Sobolev à poids. On relie aussi cette question à des inégalités de Poincaré. On retrouve en particulier des résultats connus lorsque le domaine est lipschitzien ou plus généralement est un domaine de John.

Didier Bresch, LAMA, Université de Savoie. 2:00:00 11 décembre 2009 14:30 edp
Belkacem SAID-HOUARI, LAMA, Université de Savoie. 2:00:00 10 décembre 2009 16:30 edp
Dimitrios Mitsotakis, Université Paris Sud 11. 2:00:00 4 décembre 2009 14:00 edp
Nonlinear dispersive wave computation with finite volumes method
Abstract

The complete water wave problem remains a difficult task despite recent progresses in this field (Clamond & Grue, 2001). Its intrinsic complexity and stiffness prevent from efficient simulations in complex and large domains. Consequently, a number of approximative models have been proposed. In the present work we consider weakly nonlinear/weakly dispersive wave regime which is modelled by the family of Boussinesq type equations. Mathematically these models are expressed as dispersive nonlinear PDEs. In the present study we apply some finite volumes methods to these models. Our numerical schemes are tested on various practical problems. First, we consider some classical questions of soliton dynamics: solitary wave propagation, conservation of invariants, interactions, dispersive shock formation. A comparison with experiments on solitons head-on collision is performed (J. Hammack et al, 2004). Finally, we pay a lot of attention to the problem of the wave run-up onto a beach. This problem is very challenging from physical point of view (triple point) and numerical techniques have to treat wet/dry interface transition. Our algorithm is validated against experimental data of Synolakis and Zelt on breaking and nonbreaking solitary waves run-up onto a plane beach. This is a joint work with D. Dutykh and Th. Katsaounis.