Dans le cas des EDP stochastique, les solutions sont définies sur un espace de dimension infinie et les techniques utilisées pour des équations stochastiques ordinaires - fonction de Lyapunov, hypoellipticité, compacité du semi groupe de transition etc.- ne peuvent pas être appliquées ou nécessitent d'être adaptées. Dans cet exposé j'illustrerai des méthodes utilisées pour l'étude des mesures invariantes pour les EDP stochastiques et leurs applications à des cas spécifiques: dynamique de populations, équation de Burgers, équations de Navier-Stokes etc.
We present some numerical methods to solve control problems in the coefficients where the cost functional may depend on the gradient of the state non linearly. The main difficulty comes from the fact that the relaxed functional cost is not explicitly known. We prove some convergence results just using an upper or a lower approximation of this relaxed functional.
We consider a control problem in the coefficients for an elliptic linear equation where the cost functional is non-linear in the gradient of the function state. The control variables are the coefficients of the diffusion matrix. This type of problems arises in Optimal Design of Composite Materials. It is well known that they have not a solution in general. Here we use the homogenization method to obtain a relaxed formulation.
La simulation numérique des écoulements turbulents est délicate. En effet, lorsque le pas d'espace du maillage est plus grand que l'échelle dissipative, le maillage ne permet pas la représentation des plus petites échelles de l'écoulement réel. L'énergie transférée depuis les grandes échelles vers les petites échelles, par l'action des termes d'interaction non linéaires, n'est pas dissipée correctement. On constate alors une augmentation anormale de l'énergie au niveau des échelles qui correspondent à la taille de la maille de calcul. En conséquence, la réalisation d'une simulation numérique directe (résolution de toutes les échelles physiques sans modélisation de la turbulence) pour des écoulements caractérisés par un nombre de Reynolds élevé est très coûteuse en ressources informatiques. Plusieurs méthodes ont été développées pour permettre la simulation numérique de tels écoulements. La méthode multi-niveaux que nous proposons consiste à appliquer un traitement spécifique à chaque échelle, en considérant les propriétés physiques de l'écoulement. La décomposition des échelles du champ de vitesse est utilisée pour imposer une décroissance correcte du spectre d'énergie. La dynamique des grandes échelles est améliorée par le contrôle de l'accumulation de l'énergie sur les modes élevés.
On donne une condition géométrique nécessaire et suffisante sur un domaine borné arbitraire pour que l'opérateur divergence possède un inverse à droite continu dans des espaces de Lebesgue et de Sobolev à poids. On relie aussi cette question à des inégalités de Poincaré. On retrouve en particulier des résultats connus lorsque le domaine est lipschitzien ou plus généralement est un domaine de John.
The complete water wave problem remains a difficult task despite recent progresses in this field (Clamond & Grue, 2001). Its intrinsic complexity and stiffness prevent from efficient simulations in complex and large domains. Consequently, a number of approximative models have been proposed. In the present work we consider weakly nonlinear/weakly dispersive wave regime which is modelled by the family of Boussinesq type equations. Mathematically these models are expressed as dispersive nonlinear PDEs. In the present study we apply some finite volumes methods to these models. Our numerical schemes are tested on various practical problems. First, we consider some classical questions of soliton dynamics: solitary wave propagation, conservation of invariants, interactions, dispersive shock formation. A comparison with experiments on solitons head-on collision is performed (J. Hammack et al, 2004). Finally, we pay a lot of attention to the problem of the wave run-up onto a beach. This problem is very challenging from physical point of view (triple point) and numerical techniques have to treat wet/dry interface transition. Our algorithm is validated against experimental data of Synolakis and Zelt on breaking and nonbreaking solitary waves run-up onto a plane beach. This is a joint work with D. Dutykh and Th. Katsaounis.
En Mécanique quantique relativiste, un électron soumis à l'action d'un champ électro-magnétique externe pourrait être déstabilisé par la puissance du champ magnétique. Dans cet exposé je présenterai des travaux sur la dépendance de la première valeur propre de l'opérateur de Dirac-Coulomb magnétique en fonction de la puissance du champ magnétique.Cette étude fait intervenir une méthode variationnelle non classique pour caractériser les valeurs propres d'un opérateur dans un gap du spectre continu.
``Bounds on the product of the first two non-trivial frequences of a free membrane'' In this talk we are interested in the eigenvalue problem of a free membrane represented as a bounded simply-connected planar domain D with Lipschitz boundary. The aim of this talk is twofold. First, we give a positive answer to the following conjecture of Iosif Polterovich: the product of the first two non-trivial Neumann eigenvalues of the laplacian on D (frequencies of the free membrane D) is upper bounded by the value of the same quantity for the disk with same area as D. This estimate is sharp and the equality occurs if and only if D is a disk. Secondly, we consider the class of n-sided convex polygons and establish an isoperimetric inequality for the product of some moments of inertia. As an application, we obtain an explicit nice upper bound for the product of the first two non-trivial frequences of a free membrane represented as a n-sided convex polygon.
La théorie des équations différentielles stochastiques rétrogrades (EDSRs) permet, entre autre, de donner une représentation probabiliste d'EDPs semi-linéaires. Dans cet exposé nous nous intéresserons à des EDSRs en horizon infini qui nous fournissent un outil alternatif pour l'étude de problèmes de contrôle optimal ainsi que certains problèmes de Neumann semi-linéaires associés à des phénomènes ergodiques et étudiés par G. Barles et F. Da Lio dans leur article ``On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions'' (2005).
On considère la classe des systèmes de Timoshenko. L’objectif est de démontrer la stabilité à l’infini (l’énergie décroit vers zéro quand le temps converge vers l’infini) et obtenir une estimation sur le taux de décroissance. Pour cela, on distingue deux cas. 1. Les deux équations ont la meme vitesse de propagation : pour toute solution faible, on montre une estimation générale et explicite sur l’énergie ce qui donne une idée précise sur l’influence de chaque controle sur la stabilité du système. On donne quelques exemples pour illustrer notre estimation. 2. Les deux équations n’ont pas la meme vitesse de propagation : sous des hypothèses plus fortes et pour des solutions plus régulières, on montre une estimation de stabilité plus faible. L’idée de la démonstration est basée sur la méthode des multiplicateurs et quelques inégalités intégrales. Ses résultats ont été obtenus en collaboration avec S. Messaoudi (KFUPM, Dhahran, Arabie Saoudite) dont une partie va apparaitre dans Mathematical Methods in the Applied Sciences.
We consider the problem of approximating low eigenvalues of the Laplace operator on bounded domains in n dimensional Euclidean space with Dirichlet boundary conditions. The general purpose is to be able to understand better the relationships between the geometry of the domain and low eigenvalues, and we divide our approach into (roughly) three parts as follows: 1) asymptotic expansions 2) bounds depending on geometric quantities 3) more complex conjectured bounds supported by extensive numerical computations